Spider Proprioception: Receptors, Reflexes, and Control of Locomotion

  • Ernst-August Seyfarth


Historically, the question of how animals control their own movements has been a major concern of behavioral physiology. Much of the early and recent work has focused upon the recurring debate about central versus peripheral control of repetitive behavior such as locomotion. While many rhythmic behaviors such as walking, flying, or breathing can be maintained in the absence of patterned sensory input, there is now apparent consent among neurobiologists that peripheral feedback by way of sensory receptors (such as proprioceptors) is essential for fine control of certain behavior patterns and for reacting to the environment as the situation may demand (Delcomyn 1980; Selverston 1980).


Trichoid Sensilla Lyriform Organ Hair Sensilla Tactile Hair Hair Plate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barth FG (1976) Sensory information from strains in the exoskeleton. In: Hepburn HR (ed) The insect integument. Elsevier, Amsterdam Oxford New York, pp 445–473Google Scholar
  2. Barth FG (1981) Strain detection in the arthropod exoskeleton. In: Laverack MS, Cosens D (eds) Sense organs. Blackie, Glasgow London, pp 112–141Google Scholar
  3. Barth FG, Blickhan R (1984) Mechanoreceptors. In: Bereiter-Hahn J, Matoltsy AG, Richards KS (eds) Biology of the integument, vol I. Invertebrates. Springer, Berlin Heidelberg New York, pp 554–582CrossRefGoogle Scholar
  4. Barth FG, Geethabali (1982) Spider vibration receptors: Threshold curves of individual slits in the metatarsal lyriform organ. J Comp Physiol 148:175–185CrossRefGoogle Scholar
  5. Barth FG, Libera W (1970) Ein Atlas der Spaltsinnesorgane von Cupiennius salei Keys. Chelicerata (Araneae). Z Morphol Tiere 68:343–369CrossRefGoogle Scholar
  6. Bässler U, Graham D (1978) Zur Kontrolle der Beinbewegung bei einem laufenden Insekt. In: Hauske G, Butenandt E (eds) Kybernetik ’77. Oldenbourg, München, pp 54–65Google Scholar
  7. Blickhan R, Barth FG (1985) Strains in the exoskeleton of spiders: J Comp Physiol (submitted)Google Scholar
  8. Bowerman RF (1975) The control of walking in the scorpion. I. Leg movements during normal walking. J Comp Physiol 100:183–196CrossRefGoogle Scholar
  9. Bowerman RF (1977) The control of arthropod walking. Comp Biochem Physiol 56A:231–247CrossRefGoogle Scholar
  10. Brenner HR (1972) Evidence for peripheral inhibition in an arachnid muscle. J Comp Physiol 80:227–231CrossRefGoogle Scholar
  11. Carrell JS (1972) An improved treading device for tethered insects. Science 175:1279CrossRefGoogle Scholar
  12. Cavagna GA, Heglund NC, Taylor CR (1977) Walking, running and galloping: Mechanical similarities between different animals. In: Pedley TJ (ed) Scale effects in animal locomotion. Academic Press, London New York, pp 111–125Google Scholar
  13. Dahmen HJ (1980) A simple apparatus to investigate the orientation of walking insects. Experientia 36:685–686CrossRefGoogle Scholar
  14. Delcomyn F (1980) Neural basis of rhythmic behavior in animals. Science 210:492–498CrossRefPubMedGoogle Scholar
  15. Delcomyn F (1982) Insect locomotion on land. In: Herreid CF, Fourtner CR (eds) Locomotion and energetics in arthropods. Plenum Press, New York London, pp 103–125Google Scholar
  16. DeLong M (1971) Central patterning of movement. In: Central control of movement. Neurosci Res Prog Bull 9:10–30Google Scholar
  17. Dixon HH (1892) On the walking of arthropoda. Nature (London) 47:56–58CrossRefGoogle Scholar
  18. Eckweiler W (1983) Topographie von Propriorezeptoren, Muskeln und Nerven im PatellaTibia- und Metatarsus-Tarsus-Gelenk des Spinnenbeins. Diplomarbeit, Fachbereich Biologie, J W Goethe-Universität Frankfurt am MainGoogle Scholar
  19. Ehlers M (1939) Untersuchungen über Formen aktiver Lokomotion bei Spinnen. Zool Jahrb Abt Syst 72:373–499Google Scholar
  20. Evoy WH, Ayers J (1982) Locomotion and control of limb movements. In: Sandeman DC, Atwood HL (eds) The biology of crustacea, vol IV. Neural integration and behavior. Academic Press, London New York, pp 61–105Google Scholar
  21. Ferdinand W (1981) Die Lokomotion der Krabbenspinnen (Araneae, Thomisidae) und das Wilsonsche Modell der metachronen Koordination. Zool Jahrb Physiol 85:46–65Google Scholar
  22. Foelix RF (1970) Structure and function of tarsal sensilla in the spider Araneus diadematus. J Exp Zool 175:99–124CrossRefGoogle Scholar
  23. Foelix RF (1982) Biology of spiders. Harvard Univ Press, Cambridge LondonGoogle Scholar
  24. Foelix RF, Choms A (1979) Fine structure of a spider joint receptor and associated synapses. Eur J Cell Biol 19:149–159PubMedGoogle Scholar
  25. Foelix RF, Chu-Wang I (1973) The morphology of spider sensilla. I. Mechanoreceptors. Tissue Cell 5:451–460CrossRefPubMedGoogle Scholar
  26. Fourtner CR, Sherman RG (1973) Chelicerate skeletal neuromuscular systems. Am Zool 13:271–289CrossRefGoogle Scholar
  27. Frank H (1957) Untersuchungen zur funktionellen Anatomie der lokomotorischen Extremitäten von Zygiella x-notata, einer Radnetzspinne. Zool Jahrb Anat 76:423–460Google Scholar
  28. Fröhlich A (1978) Der Lauf der Trichterspinne Agelena labyrinthica Cl. Verh Dtsch Zool Ges 1978:244Google Scholar
  29. Graham D (1983) Insects are both impeded and propelled by their legs during walking. J Exp Biol 104:129–137Google Scholar
  30. Harris DJ, Mill PJ (1977) Observations on the leg receptors of Ciniflo (Araneida, Dictynidae). I. External mechanoreceptors. J Comp Physiol 119:37–54CrossRefGoogle Scholar
  31. Hayes WF, Barber SB (1967) Proprioceptor distribution and properties in Limulus walking legs. J Exp Zool 165:195–210CrossRefGoogle Scholar
  32. Herreid CF, Fourtner CR (eds) (1982) Locomotion and energetics in arthropods. Plenum Press, New York LondonGoogle Scholar
  33. Hoyle G (1976) Arthropod walking. In: Herman RM, Grillner S, Stein PSG, Stuart DG (eds) Neural control of locomotion. Plenum Press, New York London, pp 137–179CrossRefGoogle Scholar
  34. Jacobi-Kleemann M (1953) Über die Lokomotion der Kreuzspinne Aranea diadema beim Netzbau (nach Filmanalysen). Z Vergl Physiol 34:606–654CrossRefGoogle Scholar
  35. Kaestner A (1924) Beiträge zur Kenntnis der Lokomotion der Arachniden. I. Araneae. Arch Naturgesch 90A:1–19Google Scholar
  36. Linzen B, Gallowitz P (1975) Enzyme activity patterns in muscles of the lycosid spider, Cupiennius salei. J Comp Physiol 96:101–109CrossRefGoogle Scholar
  37. Mill PJ, Harris DJ (1977) Observations on the leg receptors of Ciniflo (Araneida, Dictynidae). III. Proprioceptors. J Comp Physiol 119:63–72CrossRefGoogle Scholar
  38. Moffett S, Doell GS (1980) Alteration of locomotor behavior in wolf spiders carrying normal and weighted egg cocoons. J Exp Zool 213:219–226CrossRefGoogle Scholar
  39. Markl H (1962) Borstenfelder an den Gelenken als Schweresinnesorgane bei Ameisen und anderen Hymenopteren. Z Vergl Physiol 45:475–569CrossRefGoogle Scholar
  40. Page CH (1982) Control of posture. In: Sandeman DC, Atwood HL (eds) The biology of crustacea, vol IV. Neural integration and behavior. Academic Press, London New York, pp 33–59Google Scholar
  41. Palmgren P (1981) The mechanism of the extrinsic muscles of spiders. Ann Zool Fenn 18:203–207Google Scholar
  42. Parry DA (1960) The small leg-nerve of spiders and a probable mechanoreceptor. Q J Microsc Sci 101:1–8Google Scholar
  43. Pflüger H-J, Bräunig P, Hustert R (1981) Distribution and specific central projections of mechanoreceptors in the thorax and proximal leg joints of locusts. II. The external mechanoreceptors: hair plates and tactile hairs. Cell Tissue Res 216:79–96CrossRefPubMedGoogle Scholar
  44. Pringle JWS (1938) Proprioception in insects. III. The function of the hair sensilla at the joints. J Exp Biol 15:467–473Google Scholar
  45. Rathmayer W (1966) Die Innervation der Beinmuskeln einer Spinne, Eurypelma hentzi Chamb. (Orthognata, Aviculariidae). Verh Dtsch Zool Ges 1965:505–511Google Scholar
  46. Rathmayer W (1967) Elektrophysiologische Untersuchungen an Propriorezeptoren im Bein einer Vogelspinne (Eurypelma hentzi Chamb.). Z Vergl Physiol 54:438–454CrossRefGoogle Scholar
  47. Rathmayer W, Koopmann J (1970) Die Verteilung der Propriorezeptoren im Spinnenbein. Untersuchungen an der Vogelspinne Dugesiella hentzi Chamb. Z Morphol Tiere 66:212–223CrossRefGoogle Scholar
  48. Ruhland M (1976) Untersuchungen zur neuromuskulären Organisation eines Muskels aus Laufbeinregeneraten einer Vogelspinne (Dugesiella hentzi Ch.). Verh Dtsch Zool Ges 1976:238Google Scholar
  49. Ruhland M, Rathmayer W (1978) Die Beinmuskulatur und ihre Innervation bei der Vogelspinne Dugesiella hentzi (Ch.) (Araneae, Aviculariidae). Zoomorphologie 89:33–46CrossRefGoogle Scholar
  50. Selverston AI (1980) Are central pattem generators understandable? (including open peer commentaries). Behav Brain Sci 3:535–571CrossRefGoogle Scholar
  51. Seyfarth E-A (1978a) Lyriform slit sense organs and muscle reflexes in the spider leg. J Comp Physiol 125:45–57CrossRefGoogle Scholar
  52. Seyfarth E-A (1978b) Mechanoreceptors and proprioceptive reflexes: lyriform organs in the spider leg. Symp Zool Soc Lond 42:457–467Google Scholar
  53. Seyfarth E-A, Barth FG (1972) Compound slit sense organs on the spider leg: mechanoreceptors involved in kinesthetic orientation. J Comp Physiol 78:176–191CrossRefGoogle Scholar
  54. Seyfarth E-A, Bohnenberger J (1980) Compensated walking of tarantula spiders and the effect of lyriform slit sense organ ablation. Proc Int Congr Arachnol 8:249–255Google Scholar
  55. Seyfarth E-A, Pflüger H-J (1984) Proprioceptor distribution and control of a muscle reflex in the tibia of spider legs. J Neurobiol 15:365–374CrossRefPubMedGoogle Scholar
  56. Seyfarth E-A, Eckweiler W, Hammer K (1985) Proprioceptors and sensory nerves in the legs of a spider, Cupiennius salei (Arachnida, Araneida). Zoomorphology (in press)Google Scholar
  57. Seyfarth E-A, Hergenröder R, Ebbes H, Barth FG (1982) Idiothetic orientation of a wandering spider: compensation of detours and estimates of goal distance. Behav Ecol Sociobiol 11:139–148CrossRefGoogle Scholar
  58. Weber T, Thorson J, Huber F (1981) Auditory behavior of the cricket. I. Dynamics of compensated walking and discrimination paradigms on the Kramer treadmill. J Comp Physiol 141:215–232CrossRefGoogle Scholar
  59. Wendler G (1978) Lokomotion: das Ergebnis zentral-peripherer Interaktion. Verh Dtsch Zool Ges 1978:80–96Google Scholar
  60. Wilson DM (1966) Insect walking. Annu Rev Entomol 11:103–122CrossRefPubMedGoogle Scholar
  61. Wilson DM (1967) Stepping patterns in tarantula spiders. J Exp Biol 47:133–151Google Scholar

Copyright information

© Springer-Verlag Berlin, Heidelberg 1985

Authors and Affiliations

  • Ernst-August Seyfarth
    • 1
  1. 1.Zoologisches InstitutJ.-W.-Goethe-Universität, Gruppe SinnesphysiologieFrankfurt am Main 1Federal Republic of Germany

Personalised recommendations