Advertisement

Neuroethology of the Spider Vibration Sense

  • Friedrich G. Barth
Chapter

Abstract

Spiders are not the favorite animals of most people. Despite much irrational antipathy, however, generally one finds admiration for the beauty shown by the regular cartwheel geometry of the orb web and for the swiftness and precision of spiders that are lured and guided to prey by the slightest vibrations.

Keywords

Prey Capture Banana Plant Threshold Curve Vibratory Signal Behav Ecol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Babu KS, Barth FG (1984) Neuroanatomy of the central nervous system of the wandering spider, Cupiennius salei (Arachnida, Araneida). Zoomorphology 104:344–359CrossRefGoogle Scholar
  2. Barth FG (1972) Die Physiologie der Spaltsinnesorgane. II. Funktionelle Morphologie eines Mechanoreceptors. J Comp Physiol 81:159–186CrossRefGoogle Scholar
  3. Barth FG (1982) Spiders and vibratory signals: Sensory reception and behavioral significance. In: Witt PN, Rovner JS (eds) Spider communication: mechanisms and ecological significance. Princeton Univ Press, Princeton, NJ, pp 67–122Google Scholar
  4. Barth FG, Blickhan R (1984) Mechanoreception. In: Bereiter-Hahn J, Matoltsy AG, Richards KS (eds) Biology of the integument, vol I. Springer, Berlin Heidelberg New York, pp 554–582CrossRefGoogle Scholar
  5. Barth FG, Geethabali (1982) Spider vibration receptors: Threshold curves of individual slits in the metatarsal lyriform organ. J Comp Physiol 148:175–185CrossRefGoogle Scholar
  6. Barth FG, Seyfarth E-A (1979) Cupiennius salei Keys. (Araneae) in the highlands of Central Guatemala. J Arachnol 7:255–263Google Scholar
  7. Bleckmann H, Barth FG (1984) Sensory ecology of a semiaquatic spider (Dolomedes triton). II. The release of predatory behavior by water surface waves. Behav Ecol Sociobiol 14:303–312CrossRefGoogle Scholar
  8. Bleckmann H, Müller U, Hoin-Radkovski I (1984) Determination of source distance by surface-feeding fishes Aplocheilus lineatus (Cyprinodontidae) and Pantodon buchholzi (Pantodontidae). In: Varju D, Schnitzler U (eds) Orientation and localization in engineering and biology. Springer, Berlin Heidelberg New York, pp 66–68CrossRefGoogle Scholar
  9. Bleckmann H, Rovner JS (1984) Sensory ecology of a semiaquatic spider (Dolomedes triton). I. Roles of vegetation and wind-generated waves in site selection. Behav Ecol Sociobiol 14:297–301CrossRefGoogle Scholar
  10. Bleckmann H, Schwartz E (1982) The functional significance of frequency modulation within a wave train for prey localization in the surface-feeding fish Aplocheilus lineatus (Cyprinodontidae). J Comp Physiol 145:331–339CrossRefGoogle Scholar
  11. Brownell PH (1977) Compressional and surface waves in sand used by desert scorpions to locate prey. Science 197:4303–4304CrossRefGoogle Scholar
  12. Brownell P, Farley RD (1979a) Detection of vibrations in sand by tarsal sense organs of the nocturnal scorpion, Paruroctonus mesaensis. J Comp Physiol 131:23–30CrossRefGoogle Scholar
  13. Brownell P, Farley RD (1979b) Orientation to vibrations in sand by the nocturnal scorpion Paruroctonus mesaensis: mechanism of target localization. J Comp Physiol 131:31–38CrossRefGoogle Scholar
  14. Cremer L, Heckl M, Ungar EE (1973) Structure-borne sound. Structural vibrations and sound radiation at audio frequencies. Springer, Berlin Heidelberg New YorkGoogle Scholar
  15. Foelix RF (1970) Chemosensitive hairs in spiders. J Morphol 132:313–334CrossRefPubMedGoogle Scholar
  16. Görner P, Andrews P (1969) Trichobothrien, ein Ferntastsinnesorgan bei Webespinnen. Z Vergl Physiol 64:301–317CrossRefGoogle Scholar
  17. Hergenröder R, Barth FG (1983a) The release of attack and escape behavior by vibratory stimuli in a wandering spider (Cupiennius salei Keys.) J Comp Physiol 152:347–358CrossRefGoogle Scholar
  18. Hergenröder R, Barth FG (1983b) Vibratory signals and spider behavior: How do the sensory inputs from the eight legs interact in orientation? J Comp Physiol 152:361–371CrossRefGoogle Scholar
  19. Hoin-Radkovsky I, Bleckmann H, Schwartz E (1984) Determination of source distance in the surface-feeding fish Pantodon buchholzi Pantodontidae. Anim Behav 32:840–851CrossRefGoogle Scholar
  20. Keuper A, Kühne R (1983) The acoustic behavior of the bushcricket Tettigonia cantans II. Transmission of airborne-sound and vibration signals in the biotope. Behav Proc 8:125–145CrossRefGoogle Scholar
  21. Klärner D, Barth FG (1982) Vibratory signals and prey capture in orb-weaving spiders (Zygiella x-notata, Nephila clavipes; Araneidae) J Comp Physiol 148:445–455CrossRefGoogle Scholar
  22. Krafft B (1978) The recording of vibratory signals performed by spiders during courtship. Sym Zool Lond 42:59–67Google Scholar
  23. Lang HH (1977) Mechanismen der Beuteerkennung und der intraspezifischen Kommunikation bei der räuberischen Wasserwanze Notonecta glauca L und ihre Rolle bei der Aufrechterhaltung der Populationsstruktur. Dissertation, Univ Konstanz, KonstanzGoogle Scholar
  24. Lang HH (1980) Surface wave discrimination between prey and nonprey by the backswimmer Notonecta glauca L (Hemiptera, Heteroptera). Behav Ecol Sociobiol 6:233–246CrossRefGoogle Scholar
  25. Liesenfeld FJ (1956) Untersuchungen am Netz und über den Erschütterungssinn von Zygiella x-notata (CI) (Araneidae) Z Vergl Physiol 38:563–593CrossRefGoogle Scholar
  26. Liesenfeld FJ (1961) Über Leistungen und Sitz des Erschütterungssinnes von Netzspinnen. Biol Zentralbl 80:465–475Google Scholar
  27. Markl H (1973) Leistungen des Vibrationssinnes bei wirbellosen Tieren. Fortsehr Zool 21: 100–120Google Scholar
  28. Markl H (1983) Vibrational communication. In: Huber F, Markl H (eds) Neuroethology and behavioral physiology. Springer, Berlin Heidelberg New York Tokyo, pp 332–353CrossRefGoogle Scholar
  29. Masters MW (1984a) Vibrations in the orb web of Nuctenea sclopetaria (Araneidae). I. Transmission through the web. Behav Ecol Sociobiol 15:207–215CrossRefGoogle Scholar
  30. Masters MW (1984b) Vibrations in the orb web of Nuctenea sclopetaria (Araneidae) II. Prey and wind signals and the spider’s response threshold. Behav Ecol Sociobiol 15:217–223CrossRefGoogle Scholar
  31. Masters MW, Markl H (1981) Vibration signal transmission in spider orb webs. Science 213:363–365CrossRefPubMedGoogle Scholar
  32. Melchers M (1967) Der Beutefang von Cupiennius salei Keys. Z Morphol Oekol Tiere 58:321–346CrossRefGoogle Scholar
  33. Michelsen A, Fink F, Gogala M, Traue D (1982) Plants as transmission channels for insect vibrational songs. Behav Ecol Sociobiol 11:269–281CrossRefGoogle Scholar
  34. Murphey RK (1973) Mutual inhibition and the organization of a nonvisual orientation in Notonecta. J Comp Physiol 84:31–69CrossRefGoogle Scholar
  35. Roemer van de A (1980) Eine vergleichende morphologische Untersuchung an dem für die Vibrationswahrnehmung wichtigen Distalbereich des Spinnenbeines. Diplomarbeit, Univ Frankfurt, Frankfurt am MainGoogle Scholar
  36. Roland Ch, Rovner JS (1983) Chemical and vibratory communication in the aquatic pisaurid spider Dolomedes triton (Araneae: Pisauridae). J Arachnol 11:77–85Google Scholar
  37. Rovner JS, Barth FG (1981) Vibratory communication through living plants by a tropical wandering spider. Science 214:464–466CrossRefPubMedGoogle Scholar
  38. Schüch W, Barth FG (1985) Temporal patterns in the vibratory courtship of a wandering spider (Cupiennius salei Keys.). Behav Ecol Sociobiol (in press)Google Scholar
  39. Skudrzyk E (1971) The foundations of acoustics. Springer, WienCrossRefGoogle Scholar
  40. Sommerfeld A (1970) Vorlesungen über theoretische Physik, Bd 2, Mechanik der deformierbaren Medien. Akad Verlagsges, LeipzigGoogle Scholar
  41. Speck J, Barth FG (1982) Vibration sensitivity of pretarsal slit sensilla in the spider leg. J Comp Physiol 148:187–194CrossRefGoogle Scholar
  42. Suter RB (1978) Cyclosa turbinata (Araneae, Araneidae): Prey discrimination via web-borne vibrations. Behav Ecol Sociobiol 3:283–296CrossRefGoogle Scholar
  43. Tretzel E (1961a) Biologie, Ökologie und Brutpflege von Coelotes terrestris (Wider) (Araneae: Agelenidae). II. Brutpflege. Z Morphol Oekol Tiere 50:375–524CrossRefGoogle Scholar
  44. Uetz GW, Stratton GE (1982) Acoustic communication and reproductive isolation in spiders. In: Witt PN, Rovner JS (eds) Spider communication: Mechanisms and ecological significance. Princeton Univ Press, Princeton, NJ, pp 123–158Google Scholar
  45. Vollrath F (1979a) Behavior of the kleptoparasitic spider Argyrodes elevaîus (Araneae, Theridiidae). Anim Behav 27:515–521CrossRefGoogle Scholar
  46. Vollrath F (1979b) Vibrations: their signal function for a spider kleptoparasite. Science 205:1149–1151CrossRefPubMedGoogle Scholar
  47. Wiese K (1974) The mechanoreceptive system of prey localization in Notonecta. J Comp Physiol 92:317–325CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin, Heidelberg 1985

Authors and Affiliations

  • Friedrich G. Barth
    • 1
  1. 1.Zoologisches InstitutJ. W. Goethe-Universität, Gruppe SinnesphysiologieFrankfurt am Main 1Federal Republic of Germany

Personalised recommendations