Patterns of Arrangement and Connectivity in the Central Nervous System of Arachnids

  • K. Sasira Babu


In arthropods the organization of the central nervous system is related to the body segmentation and to the degree of development of segmental appendages and sense organs. In arachnids the body is divided into a prosoma and opisthosoma. Arachnids do not have antennae or appendages on the opisthosoma apart from spinnerets and the appendages they have are concentrated on the prosoma. In addition, arachnids have developed special sensory structures like pectines, malleoli, flagella, modified sensory legs, slits and other sense organs. These and other characteristic features are reflected by the structure of the arachnid central nervous system (CNS). This chapter gives a comparative account of the external morphology and internal anatomy of the CNS of five wellknown arachnid orders (scorpions, whip scorpions, tailless whip scorpions, wind scorpions and spiders). What we know of the major features of the arachnid CNS is mostly due to the work of a few authors (Saint-Remy 1890, Borner 1904; Gottlieb 1926; Hanström 1928; Kaestner 1932, 1933, 1940; Millot 1949; Babu 1965, Babu and Barth 1984). A brief review of its less-known functions is included.


Central Body Mushroom Body Ventral Nerve Cord Abdominal Ganglion Subesophageal Ganglion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Babu KS (1965) Anatomy of the central nervous system of arachnids. Zool Jahrb Anat 82:1–154Google Scholar
  2. Babu KS (1969) Certain histological and anatomical features of the central nervous system of a large Indian spider, Poecilotheria. Am Zool 9:113–119CrossRefPubMedGoogle Scholar
  3. Babu KS (1975) Post-embryonic development of the central nervous system of the spider, Argiope aurantia (Lucas). J Morphol 146:325–342CrossRefGoogle Scholar
  4. Babu KS, Barth FG (1984) Neuroanatomy of the central nervous system of the wandering spider, Cupiennius salei Keys. Zoomorphology 104:344–359CrossRefGoogle Scholar
  5. Babu KS, Venkatachari SAT (1972) Activity patterns of interneurons in the ventral nerve cord of the scorpion, H. fulvipes. Indian J Exp Biol 10:49–58PubMedGoogle Scholar
  6. Borner C (1904) Beiträge zur Morphologie der Arthropoden. 1. Ein Beitrag zur Kenntnis der Pedipalpen. Zoologica 17:1–174Google Scholar
  7. Bowermann RF, Burrows M (1980) The morphology and physiology of some walking leg motor neurons in a scorpion. J Comp Physiol 140:31–42CrossRefGoogle Scholar
  8. Brownell P, Farley RD (1979a) Detection of vibrations in sand by tarsal sense organs of the nocturnal scorpion, Paruroctonus mesaensis. J Comp Physiol 131:23–30CrossRefGoogle Scholar
  9. Brownell P, Farley RD (1979b) Orientation to vibrations in sand by the nocturnal scorpion Paururoctonus mesaensis: mechanism of target localization. J Comp Physiol 131:31–38CrossRefGoogle Scholar
  10. Bullock TH, Horridge A (1965) Structure and function in the nervous systems of invertebrates. Freeman, San FranciscoGoogle Scholar
  11. Görner P, Andrews P (1969) Trichobothrien, ein Ferntastsinnesorgan bei Webespinnen. Z Vergl Physiol 64:301–317CrossRefGoogle Scholar
  12. Gottlieb K (1926) Über das Gehirn des Skorpions. Z Wiss Zool 127:185–243Google Scholar
  13. Hanström B (1921) Über die Histologie und vergleichende Anatomie der Sehganglien und Globuli der Araneen. K Sven Vet Akad Handl 61:1–39Google Scholar
  14. Hanström B (1923) Further notes on the central nervous system of arachnids: scorpions, phalangids and trap-door spiders. J Comp Neurol 35:249–272CrossRefGoogle Scholar
  15. Hanström B (1928) Vergleichende Anatomie des Nervensystems der wirbellosen Tiere. Springer, Berlin Heidelberg New YorkGoogle Scholar
  16. Hergenröder R, Barth FG (1983a) Vibratory signals and spider behavior: How do the sensory inputs from the eight legs interact in orientation? J Comp Physiol 152:361–371CrossRefGoogle Scholar
  17. Hergenröder R, Barth FG (1983b) The release of attack and escape behavior by vibratory stimuli in a wandering spider (Cupiennius salei Keys). J Comp Physiol 152:347–358CrossRefGoogle Scholar
  18. Huber F (1967) Central control of movements and behavior of invertebrates. In: Wiersma CAG (ed) Invertebrate nervous systems. Univ Chicago Press, ChicagoGoogle Scholar
  19. Kaestner A (1932) Pedipalpi. In: Kükenthal W, Krumbach T (eds) Handbuch der Zoologie, vol III. De Gruyter, Berlin, pp 17–22Google Scholar
  20. Kaestner A (1933) Solifugae. In: Kükenthal W, Krumbach T (eds) Handbuch der Zoologie, vol III. De Gruyter, Berlin, pp 225–234Google Scholar
  21. Kaestner A (1940) Scorpiones. In: Kükenthal W, Krumbach T (eds) Handbuch der Zoologie, vol III. De Gruyter, Berlin, pp 131–140Google Scholar
  22. Meyer W, Jehnen R (1980) The distribution of monoamine oxidase and biogenic monoamines in the central nervous system of spiders (Arachnida, Araneida). J Morphol 164:69–81CrossRefGoogle Scholar
  23. Meyer W, Pospiech B (1977) The distribution of acetylcholinesterase in the central nervous system of web-building spiders (Arachnida, Araneae). Histochemistry 51:201–208CrossRefPubMedGoogle Scholar
  24. Millot J (1949) Chelicerates. In: Grassé PP (ed) Traîté de Zoologie, vol VI. Masson, Paris, pp 263–743Google Scholar
  25. Palka J, Babu KS (1967) Towards the physiological analysis of defensive responses of scorpions. Vergl Physiol 55:286–298Google Scholar
  26. Palmgren A (1948) A rapid method for selective silver staining of nerve fibres and nerve endings in mounted paraffin sections. Acta Zool 29:377–392CrossRefGoogle Scholar
  27. Rao KP, Gopalakrishna Reddy T (1967) Blood-borne factors in circadian rhythms of activity. Nature (London) 213:1047–1048CrossRefGoogle Scholar
  28. Saint-Remy G (1890) Contribution à l’étude du cerveau chez les arthropodes trachéates. Arch Zool Exp 5:1–274Google Scholar
  29. Sanjeeva-Reddy P, Rao KP (1970) The central course of the hair afferents and the pattern of contralateral activation in the central nervous system of the scorpion. Heterometrus fulvipes. J Exp Biol 53:165–169PubMedGoogle Scholar
  30. Speck J, Barth FG (1982) Vibration sensitivity of pretarsal slit sensilla in the spider leg. J Comp Physiol 148:187–194CrossRefGoogle Scholar
  31. Trujillo-Cenóz O (1965) Some aspects of the structural organization of the arthropod eye. Cold Spring Harbor Symp Quant Biol 30:371–382CrossRefPubMedGoogle Scholar
  32. Vasantha N, Venkatachari SAT, Murali Mohan P, Babu KS (1975) On the acetylcholine content in the scorpion, Heterometrus fulvipes C. Koch. Experientia 31:451–452CrossRefPubMedGoogle Scholar
  33. Venkatachari SAT, Babu KS (1970) Activity of motor fibers in the scorpion, H. fulvipes. Indian J Exp Biol 8:102–111PubMedGoogle Scholar
  34. Venkatachari SAT, Muralikrishna Dass P (1968) Cholinesterase activity rhythm in the ventral nerve cord of scorpion. Life Sci 7:617–621CrossRefPubMedGoogle Scholar
  35. Wheeler WM (1910) Ants, their structures, development and behavior. Columbia Univ Press, New YorkGoogle Scholar
  36. Yellamma K, Murali Mohan P, Babu KS (1979) Morphology and physiology of giant fibres in the seventh abdominal ganglion of the scorpion, Heterometrus fulvipes. Proc Indian Acad Sci(Ani Sci) 89:29–38CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin, Heidelberg 1985

Authors and Affiliations

  • K. Sasira Babu
    • 1
  1. 1.Department of ZoologyS. V. University P. G. CentreKavali, Nellore DtIndia

Personalised recommendations