Critical Evaluation of Methods for Estimating the Vacuolar pH of Plant Cells

  • A. Kurkdjian
  • H. Quiquampoix
  • H. Barbier-Brygoo
  • M. Péan
  • P. Manigault
  • J. Guern


The vacuoles of higher plant cells have been shown to be the site for accumulation of ions and metabolites (Matile 1978; Leigh et al. 1979, Leigh 1983; Marty et al. 1980; Boudet et al. 1984). The mechanisms involved in the storage functions of vacuoles are not well known. However, the presence of ATPases on the tonoplast of a number of plant species has been demonstrated (d’Auzac 1977; Lin et al. 1977 ; Leigh and Walker 1980; Cretin 1982; Aoki and Nishida 1984). These ATPases are considered to be responsible for creating a proton electrochemical gradient across the tonoplast. A classical idea is that this gradient could be used for the transport of ions and metabolites and their accumulation in the vacuole. The proton gradient across the tonoplast can also be directly used for the accumulation of secondary plant products diffusing through membranes as neutral molecules and accumulated as cations. This is the case for some indole alkaloids (Renaudin and Guern 1982) and nicotine (Kurkdjian 1982).


Indole Alkaloid Suspension Medium Accumulation Ratio High Plant Cell Acidic Vacuole 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aducci P, Federico R, Carpinelli G, Podo F (1982) Temperature dependence of intracellular pH in higher plant cells. Planta 156: 579–582CrossRefGoogle Scholar
  2. Alibert G, Carrasco A, Boudet AM (1982) Changes in biochemical composition of vacuoles isolated from Acer pseudoplatanus L. during cell culture. Biochim Biophys Acta 721: 22–29CrossRefGoogle Scholar
  3. d’Auzac J (1977) ATPase membranaire de vacuoles lysosomales: les lutoi’des du latex d’Hevea brasiliensis. Phytochem 16: 1881–1885CrossRefGoogle Scholar
  4. Ammann D, Lanter F, Steiner RA, Schulthess P, Shijo Y, Simon W (1981) Neutral carrier based hydrogen ion-selective microelectrode for extra and intracellular studies. Anal Chem 53: 2267–2269PubMedCrossRefGoogle Scholar
  5. Aoki K, Nishida K (1984) ATPase activity associated with vacuoles and tonoplast vesicles isolated from the CAM plant, Kalanchoe daiqremontiana. Physiol Plantarum 60: 21–24CrossRefGoogle Scholar
  6. Boudet AM, Alibert G, Marigo G (1984) Vacuoles and tonoplast in regulation of cellular metabolism. In: Alibert G, Boudet AM, Lea PJ (eds). Annu Proc of the Phytochem Soc of Europe : Membranes and compartmentation in the regulation of plant function, vol 23 Oxford University press, (in press)Google Scholar
  7. Caldwell PD (1956) Intracellular pH. Internat Rev Cytol 5: 229–277CrossRefGoogle Scholar
  8. Chow WS, Barber J (1980) 9-aminoacridine fluorescence changes as a measure of surface Charge density of the thylakoid membrane. Biochim Biophys Acta 589: 346–352PubMedCrossRefGoogle Scholar
  9. Crétin H, (1982) The proton gradient across the vacuo- lysosomal membrane of lutoids from the latex of Hevea brasiliensis. I. Further evidence for a proton-translocating ATPase on the vacuolysosomal membrane of intact lutoids. J Membrane Biol 65: 175–184CrossRefGoogle Scholar
  10. Foyer C, Walker D, Spencer C, Manu B (1982) Observations on the phosphate status and intracellular pH of intact cells, protoplasts and chloroplasts from photosynthetic tissue using phosphorus-31 nuclear magnetic resonance. Biochem J 202: 429–434PubMedGoogle Scholar
  11. Kubota Y, Modota Y (1980) Nanosecond fluorescence decay studies of the deoxyribonucleic acid- 9-aminoacridine and deoxyribonucleic acid-9amino-10-methylacridinium complexes. Biochem 19: 4189–4197CrossRefGoogle Scholar
  12. Kurkdjian A (1982) Absorption and accumulation of nicotine by Acer pseudoplatanus and Nicotiana tabacum cells. Physiol vég 20: 73–83Google Scholar
  13. Kurkdjian A, Barbier-Brygoo H (1983) A hydrogen ion-selective Liquid-membrane microelectrode for measurement of the vacuolar pH of plant cells in suspension culture. Anal Biochem 132: 96–104PubMedCrossRefGoogle Scholar
  14. Kurkdjian A, Barbier-Brygoo H, Manigault J, Manigault P (1984) Distribution of vacuolar pH values within populations of cells, protoplasts and vacuoles isolated from suspension cultures and plant tissues. Physiol veg 22: 193–198Google Scholar
  15. Kurkdjian A, Guern J (1981) Vacuolar pH measurement in higher plant cells. I. Evaluation of the methylamine method. Plant Physiol 67: 953–957Google Scholar
  16. Kurkdjian A, Mathieu Y, Guern J (1982) Evidence for an action of 2,4-dichlorophenoxyacetic acid on the vacuolar pH of Acer pseudoplatanus cells in suspension culture. Plant Sei Lett 27: 77–86CrossRefGoogle Scholar
  17. Lee RB, Ratcliffe RG (1983) Development of an aeration system for use in plant tissue NMR experiments. J Exp Bot 34: 1213–1221CrossRefGoogle Scholar
  18. Leigh RA (1983) Methods, progress and potential for the use of isolated vacuoles in studies of solute transport in higher plant cells. Physiol Plant 57: 390–396CrossRefGoogle Scholar
  19. Leigh RA, Rees T, Fuller AW, Banfield J (1979) The location of acid invertase activity and sucrose in the vacuoles of storage roots of beetroot (Beta vulgaris). Biochem J 178: 539–547PubMedGoogle Scholar
  20. Leigh RA, Walker RR (1980) ATPase and acid phosphatase activities associated with vacuoles isolated from storage roots of red beet (Beta vulgaris L.) Planta 150: 222–229Google Scholar
  21. Lin W, Wagner GJ, Siegelman HW, Hind G (1977) Membrane-bound ATPase of intact vacuoles and tonoplasts isolated from mature plant tissue. Biochim Biophys Acta 465: 110–117PubMedCrossRefGoogle Scholar
  22. Lüttge U, Ball E (1980) 2H+: 1 malate2 stoichiometry during crassulacean acid metabolism is unaffected by lipophilic cations. Plant Cell Environment 3: 195–200Google Scholar
  23. MacFarlane JJ, Smith FA (1982) Uptake of methylamine by Ulva rigida: transport of cations and diffusion of free base. J Exp Bot 33: 195–207CrossRefGoogle Scholar
  24. Manigault P, Manigault J, Kurkdjian A (1983) A microfluorimetric method for vacuolar pH measurement in plant cells using 9-aminoacridine. Physiol veg 21: 129–136Google Scholar
  25. Marigo G, Ball E, Lüttge U, Smith AC (1982) Use of the DMO technique for the study of relative changes of cytoplasmic pH in leaf cells in relation to CAM. Z Pflanzenphysiol 188: 223–233Google Scholar
  26. Marigo G, De Lorme YM, Lüttge U, Boudet AM (1983) Role de l’acide malique dans la regulation du pH vacuolaire dans des cellules de Catharanthus roseus cultivees in vitro. Physiol veg 21: 1135–1144Google Scholar
  27. Martin JB, Bligny R, Rebeil1e F, Douce R, Leguay JJ, Mathieu Y, Guern J (1982) A 31P NMR study of intracellular pH of plant cells cultivated in liquid medium. Plant Physiol 70: 1156–1161PubMedCrossRefGoogle Scholar
  28. Marty F, Branton D, Leigh RA (1980) Plant vacuoles. In: Tolbert (ed) The Biochemistry of plants, vol. 1. The plant cell. Acad. Press New-York, p 625Google Scholar
  29. Marty A, Viallet P (1979) Etüde de l’inhibition de la fluorescence de 1’amino-9-acridine et de 1’amino-9chloro-6 acridine par la serumalbumine humaine. C R Acad Sei Paris 288: 1715–1718Google Scholar
  30. Matile P (1978) Biochemistry and function of vacuoles. Ann Rev Plant Physiol 29: 193–213CrossRefGoogle Scholar
  31. Murphy TM, Matson GB, Morrison SL (1983) Ultraviolet-stimulated KHCO3 efflux from Rose cells. Plant Physiol 73: 20–24PubMedCrossRefGoogle Scholar
  32. Nishimura M (1982) pH in vacuoles isolated from castor bean endosperm. Plant Physiol 70:742–744Google Scholar
  33. Raven JA, Farquhar GD (1981) Methylammonium transport in Phaseolus vulgaris leaf slices. Plant Physiol 67: 859–863PubMedCrossRefGoogle Scholar
  34. Renaudin JP, Guern J (1982) Compartmentation mechanisms of indole alkaloids in cell suspension cultures of Catharanthus roseus. Physiol vég 20: 533–547Google Scholar
  35. Roberts JKM, Ray PM, Wade-Jardetzky N, Jardetzky O (1980) Estimation of cytoplasmic and vacuolar pH in higher plant cells by 31P NMR. Nature 283: 870–872CrossRefGoogle Scholar
  36. Roberts JKM,Ray PM, Wade-Jardetzky N, Jardetzky O (1981a) Extent of intracellular pH changes during H+ extrusion by maize root-tip cells. Planta 152: 74–78Google Scholar
  37. Roberts JKM, Wade-Jardetzky N, Jardetzky O (1981b) Intracellular pH measurements by 1 p Nuclear Magnetic Resonance. Influence of factors other than pH on P chemical shifts. Biochemistry 20: 5389–5394Google Scholar
  38. Roberts JKM, Wemmer D, Ray PM, Jardetzky O (1982) Regulation of cytoplasmic and vacuolar pH in maize root tips under different experimental conditions. Plant Physiol 69: 1344–1347PubMedCrossRefGoogle Scholar
  39. Romani G, Marre MT, Marre E (1983) Effects of permeant weak acids on dark CO2 fixation and malate level in maize root segments. Physiol veg 21: 867–873Google Scholar
  40. Schibeci A, Henry RJ, Stone BA, Brownlee RTC (1983) 31P NMR measurement of cytoplasmic and vacuolar pH in endosperm cells of ryegrass ( Lolium multiflorum) grown in suspension culture. Biochem Int 6: 837–844Google Scholar
  41. Theuvenet APR, Van der Wijngaard WMH, Borst-Pauwels WFH (1983) 9-aminoacridine, a fluorescent probe of the thiamine carrier in yeast cells. Biochim Biophys Acta 730: 255–262Google Scholar
  42. Viatagliano V (1983) The aggregation of dyes on polyelectrolytes. In: Wyn-Jones E, Gormally J (eds) Aggregation processes in Solution. Elsevier, Amsterdam Oxford New-York, p271Google Scholar
  43. Waddell WJ, Butler TC (1959) Calculation of intracellular pH from the distribution of 5,5 dimethyl 2,4-oxazolidine dione. Application to skeletal muscle of the dog. J Clin Invest 38: 720–729Google Scholar
  44. Wagner GJ, Lin W (1982) An active proton pump of intact vacuoles isolated from tulipa petals. Biochim Biophys acta 689: 261–266CrossRefGoogle Scholar
  45. Weigel HJ, Weis E (1984) Determination of the proton concentration difference across the tonoplast membrane of isolated vacuoles by means of 9-aminoacridine fluorescence. Plant Sei Lett 33: 163–175CrossRefGoogle Scholar
  46. Wheeler PA, Hellebust JA (1981) Uptake and concentration of alkylamines by a marine diatom. Effects of H+ and K+ and implications for the transport and accumulation of weak bases. Plant Physiol 67: 367–372PubMedCrossRefGoogle Scholar
  47. Wright SA, Syrett PJ (1983) The uptake of methylammonium and dimethylammonium by the diatom, Phaedactylum tricornutum. New Phytoi 95: 189–202CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • A. Kurkdjian
    • 1
  • H. Quiquampoix
    • 2
  • H. Barbier-Brygoo
    • 1
  • M. Péan
    • 3
  • P. Manigault
    • 1
  • J. Guern
    • 1
  1. 1.Laboratoire de Physiologie cellulaire végétaleC.N.R.S.-I.N.R.A.Gif-sur-YvetteFrance
  2. 2.Laboratoire des Sciences du SolC.N.R.A.VersaillesFrance
  3. 3.Centre de Recherches de la Croix-de-BernyRhône-Poulenc SantéAntonyFrance

Personalised recommendations