SU(2) Lattice Gauge Theory: Standard Action Versus Symanzik’s Tree-Improved Action

  • B. Berg
  • A. Billoire
  • S. Meyer
  • C. Panagiotakopoulos

Abstract

We carry out Monte Carlo simulations of the 4d SU(2) lattice gauge theory. The standard action and the Symanzik tree-improved action are used. Results for the string tension, glueball masses, and energy-momentum dispersion are reported. In case of the standard action our results are a finite size study extending previous investigations.

Keywords

Clarification 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Symanzik, K.: In: Mathematical problems in theoretical physics. Schrader et al. (eds.). Lecture Notes in Physics, Vol. 153. Berlin, Heidelberg, New York: Springer 1982Google Scholar
  2. 2.
    Symanzik, K.: Continuum limit and improved action in lattice theories. I. Principles and ϕ4 theory. Nucl. Phys. B226, 187 (1983)MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    Berg, B., Meyer, S., Montvay, I., Symanzik, K.: Improved continuum limit in the lattice O(3) non-linear sigma model. Phys. Lett. 126 B, 467 (1983) Falcioni, M., Martinelli, G., Padello, M.L., Taglienti, B., Parisi, G.: A Monte Carlo simulation with an “improved” action for the O(3) non-linear sigma model. Nucl. Phys. B 225, (FS9), 313 (1983) For recent reviews see: Berg, B.: Preprint, DESY83-120, published in the proceedings of the “International Symposium on the Theory of Elementary Particles,” Ahrenshoop (DDR), 1983 Meyer, S.: Talk presented at the Santa Barbara Workshop, 20.6.-1. 7. 83Google Scholar
  4. 4.
    Curci, G., Menotti, P., Paffuti, G.P.: Symanzik’s improved lagrangian for lattice gauge theory. Phys. Lett. 130 B, 205 (1983)Google Scholar
  5. 5.
    Weisz, W.: Continuum limit improved lattice action for pure Yang-Mills theory. I. Nucl. Phys. B212, 1 (1983)MathSciNetADSCrossRefGoogle Scholar
  6. 6.
    Weisz, P, Wohlert, R.: Nucl. Phys. B236, 137 (1984)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Berg, B.: Cargèse lectures 1983Google Scholar
  8. 8.
    Berg, B., Billoire, A., Rebbi, C.: Monte Carlo estimates of the 5(7(2) mass gap. Ann. Phys. (NY) 142, 185 (1982) and Addendum 146, 470 (1983)Google Scholar
  9. 9.
    Falcioni, M., Marinari, E., Padello, M.L., Parisi, G., Rapuano, F., Taglienti, B., Zhang, Yi- Chang: On the masses of the glueballs in pure SU(2) lattice gauge theory. Phys. Lett. 110 B, 295 (1982)Google Scholar
  10. 10.
    Ishikawa, K., Schierholz, G., Teper, M.: The glueball mass spectrum in QCD: First results of a lattice Monte Carlo calculation. Phys. Lett. 110 B, 399 (1982)Google Scholar
  11. 11.
    Berg, B., Billoire, A.: Glueball spectroscopy in 4dSU(3) lattice gauge theory. I. Nucl. Phys. B 221,109 (1983) and: Glueball spectroscopy in 4dSU(3) lattice gauge theory. II. Nucl. Phys. B226, 405 (1983)ADSCrossRefGoogle Scholar
  12. 12.
    Berg, B., Meyer, S., Montvay, I.: Nucl. Phys. B235 [FS11], 149 (1984)ADSCrossRefGoogle Scholar
  13. 13.
    Ishikawa, K., Schierholz, G., Teper, M.: Renormalization group behaviour of 0+and 2+ glueball masses in SU(2). Z. Phys. C16, 69 (1982)ADSCrossRefGoogle Scholar
  14. 14.
    Ishikawa, K., Schierholz, G., Teper, M.: Calculation of the glueball mass spectrum of SU(2) and SU(3) non-Abelian lattice gauge theories. I. Introduction and SU(2). Z. Phys. C19, 327 (1983)Google Scholar
  15. 15.
    Creutz, M.: Asymptotic-freedom scales. Phys. Rev. Lett. 45, 313 (1980)ADSCrossRefGoogle Scholar
  16. 16.
    Berg, B., Stehr, J.: 5(7(2) lattice gauge theory and Monte Carlo calculations. Z. Phys. C9, 333 (1981)ADSCrossRefGoogle Scholar
  17. 17.
    Gutbrod, F., Montvay, I.: Phys. Lett. 136B, 411 (1984)Google Scholar
  18. 18.
    Billoire, A, Marinari, E.: Phys. Lett. 139B, 399 (1984)MathSciNetGoogle Scholar
  19. 19.
    Karsch, F., Lang, C.B.: Phys. Lett. 138B, 176 (1984)Google Scholar
  20. 20.
    Berg, B., Billoire, A., Meyer, S., Panagiotakopoulos, C.: Monte Carlo calculation of SU(2) glueball states with Symanzik’s tree-level improved action. Phys. Lett. 133 B, 359 (1983)Google Scholar
  21. 21.
    Luscher, M., Weisz, P.: On-shell improved lattice gauge theories. Commun. Math. Phys. 97, 59–77 (1984)MathSciNetADSCrossRefGoogle Scholar
  22. 22.
    Belforte, S., Curci, G., Menotti, P., Paffuti, G.P.: Monte Carlo calculations with Symanzik’s improved action for QCD. Phys. Lett. 131 B, 423 (1983)Google Scholar
  23. 23.
    Fukugita, M., Kaneko, T., Niuya, T., Ukawa, A.: Measurement of the string tension in SU(2) lattice gauge theory with action including six-link loops. Phys. Lett. 130 B, 73 (1983) and AddendumGoogle Scholar
  24. 24.
    Rebbi, C.: Phase structure of non-Abelian lattice gauge theories. Phys. Rev. D21, 3350 (1980) Petcher, D., Weingarten, D.: Monte Carlo calculations and a model of the phase structure for gauge theories on discrete subgroups of 5(7(2). Phys. Rev. D22, 2465 (1980) Bhanot, G, Lang, C., Rebbi, C.: Comp. Phys. Commun. 25, 275 (1982) B. Berg, A. Billoire, S. Meyer, and C. PanagiotakopoulosADSCrossRefGoogle Scholar
  25. 25.
    Stack, J.D.: Heavy quark potential in SU(2) lattice gauge theory. Phys. Rev. D 27, 412 (1983)ADSCrossRefGoogle Scholar
  26. 26.
    Engels, J., Karsch, F., Montvay, I., Satzs, H.: Finite size effects in euclidean lattice thermodynamics for non-interacting Bose and Fermi systems. Nucl. Phys. B 205 [FS5], 545 (1982)ADSCrossRefGoogle Scholar
  27. 27.
    Falcioni, M., Marinari, E., Padello, M.L., Parisi, G., Taglienti, B., Zhang, Yi-Chang: Large- distance correlation functions for an SU(2) lattice gauge theory. Nucl. Phys. B 215 [FS5], 265 (1983)ADSCrossRefGoogle Scholar
  28. 28.
    Mütter, K.H., Schilling, K.: Glueball mass from variant actions in lattice Monte Carlo simulations. Phys. Lett. 121B, 267 (1983) Parisi, G.: Private communicationGoogle Scholar
  29. 29.
    de Forcrand, Ph.: Work in progressGoogle Scholar
  30. 30.
    Münster, G.: Strong coupling expansions for the mass gap in lattice gauge theories. Nucl. Phys. B190, 439 (1981); Erratum B205 [FS5], 545 (1982)ADSCrossRefGoogle Scholar
  31. 31.
    Seo, K.: Glueball mass estimate by strong coupling expansion in lattice gauge theories. Nucl. Phys. B209, 200 (1982)ADSCrossRefGoogle Scholar
  32. 32.
    Berg, B., Billoire, A., Koller,-K.: Monte Carlo calculation of SU(2) glueball states with Manton’s action. Nucl. Phys. B233, 50 (1984)Google Scholar
  33. 33.
    Kimura, N., Ukawa, A.: Energy-momentum dispersion of glueballs and the restoration of Lorentz invariance in lattice gauge theories. Nucl. Phys. B205 [FS5], 637 (1982). See also: Berg, B., Panagiotakopolous, C.: Photon in U(1) lattice gauge theory. Phys. Rev. Lett. 52, 94 (1984)Google Scholar
  34. 34.
    Schierholz, G., Teper, M.: Phys. Lett. 136B, 64, 69 (1984)Google Scholar
  35. 35.
    Bernreuther, W., Wetzel, W.: The relation between the A parameters of the standard and of the continuum limit improved lattice action for pure Yang-Mills theory. Phys. Lett. 132 B, 382 (1983) Iwasaki, Y., Sakai, S.: Phys. Lett. 136B, 73 (1984)Google Scholar
  36. 36.
    Belforte, S, Curci, G, Menotti, P., Paffuti, G.: Phys. Lett. 137 B, 207 (1984)Google Scholar

Copyright information

© Springer-Verlag Berlin, Heidelberg 1985

Authors and Affiliations

  • B. Berg
    • 1
  • A. Billoire
    • 2
  • S. Meyer
    • 3
  • C. Panagiotakopoulos
    • 4
  1. 1.II. Institut für Theoretische Physik der Universität HamburgHamburg 50Federal Republic of Germany
  2. 2.Service de Physique ThéoriqueCEN SaclayGif-sur-Yvette CedexFrance
  3. 3.Fachbereich Physik der Universität KaiserslauternKaiserslauternFederal Republic of Germany
  4. 4.Physics Department (Theory)The Rockefeller UniversityNew YorkUSA

Personalised recommendations