Skip to main content

Mode of Action of the Tetracyclines and the Nature of Bacterial Resistance to Them

  • Chapter

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 78))

Abstract

In an introductory chapter to a symposium on biochemical studies of antimicrobial drugs, Gale (1966) suggests that advances in the development or use of a particular antibiotic will depend upon answers to at least five questions:

  1. 1.

    What is the precise mechanism of the (selectively) toxic action?

  2. 2.

    What is the site of the toxic action within the sensitive cell?

  3. 3.

    Why is the action selective?

  4. 4.

    What is the relationship between the chemical structure of the drug and the chemistry of the sensitive site?

  5. 5.

    By what mechanisms do normally sensitive (microbial) cells become resistant to the toxic action?

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Achtman M, Manning PA, Edelbluth C, Herrlich P (1979) Export without proteolytic processing of inner and outer membrane proteins encoded by the F sex factor tra cistrons in Escherichia coli minicells. Proc Natl Acad Sci USA 76: 4837–4841

    PubMed  CAS  Google Scholar 

  • Ahlstedt S (1981) The antibacterial effects of low concentrations of antibiotics and host defence factors: a review. J Antimicrob Chemother 8: 59–70

    PubMed  CAS  Google Scholar 

  • Altenbuchner J, Schmid K, Schmitt R (1983) Tn1721-encoded tetracycline resistance: mapping of structural and regulatory genes mediating resistance. J Bacteriol 153: 116–123

    PubMed  CAS  Google Scholar 

  • Altendorf K, Hirata H, Harold FM (1975) Accumulation of lipid-soluble ions and of rubidium as indicators of the electrical potential in membrane vesicles of E. coli. J Biol Chem 250: 1405–1412

    CAS  Google Scholar 

  • Amanuma H, Strominger JL (1980) Purification and properties of penicillin-binding proteins 5 and 6 from Escherichia coli membranes. J Biol Chem 255: 11173–11180

    PubMed  CAS  Google Scholar 

  • Argast M, Beck CF (1984) Tetracycline diffuses through phospholipid bilayers and binds to phospholipids. Antimicrob Agents Chemother: 26: 263–265

    PubMed  CAS  Google Scholar 

  • Asheshov EH (1975) The genetics of tetracycline resistance in Staphylococcus aureus. J Gen Microbiol 88: 132–140

    PubMed  CAS  Google Scholar 

  • Atkinson BA, Amaral L (1982) Sublethal concentrations of antibiotics, effects on bacteria and the immune system. CRC Crit Rev Microbiol 9: 101–138

    CAS  Google Scholar 

  • Backman K, Boyer HW (1983) Tetracycline resistance determined by pBR322 is mediated by one polypeptide. Gene 26: 197–203

    PubMed  CAS  Google Scholar 

  • Bakhtiar M, Selwyn S (1983) Antibacterial activity of a new thiatetracycline. J Antimicrob Chemother 11: 291

    PubMed  CAS  Google Scholar 

  • Ball PR, Chopra I, Eccles SJ (1977) Accumulation of tetracyclines by Escherichia coli K-12. Biochem Biophys Res Commun 77: 1500–1507

    PubMed  CAS  Google Scholar 

  • Ball PR, Shales SW, Chopra I (1980) Plasmid-mediated tetracycline resistance in Escherichia coli involves increased efflux of the antibiotic. Biochem Biophys Res Commun 93: 74–81

    PubMed  CAS  Google Scholar 

  • Banerjee S, Chakrabarti K (1976) The transport of tetracyclines across the mouse ileum in vitro: the effects of cations and other agents. J Pharm Pharmacol 28: 133–138

    PubMed  CAS  Google Scholar 

  • Barringer WC, Shultz W, Sieger GM, Nash RA (1974) Minocycline hydrochloride and its relationship to other tetracycline antibiotics. Am J Pharm 146: 179–191

    CAS  Google Scholar 

  • Bassett EJ, Keith MS, Armelagos GJ, Martin DL, Villanueva AR (1980) Tetracycline-labeled human bone from ancient Sudanese Nubia. Science 209: 1532–1534

    PubMed  CAS  Google Scholar 

  • Beard NS, Armentrout SA, Weisberger AS (1969) Inhibition of mammalian protein synthesis by antibiotics. Pharmacol Rev 21: 213–245

    CAS  Google Scholar 

  • Beck CF (1979) A genetic approach to analysis of transposons. Proc Natl Acad Sci USA 76: 2376–2380

    PubMed  CAS  Google Scholar 

  • Beck CF, Mutzel R, Barbe J, Muller W (1982) A multifunctional gene (tetR) controls Tn10 encoded tetracycline resistance. J Bacteriol 150: 633–642

    PubMed  CAS  Google Scholar 

  • Bennett PM, Shales SW (1981) Characterization of the tetracycline resistance region of the IncP plasmid RP1. In: Levy SB (ed) Molecular biology, pathogenicity and ecology of bacterial plasmids. Plenum, New York, p 581

    Google Scholar 

  • Bennett PM, Richmond MH, Petrocheilou V (1980) The inactivation of tet genes on a plasmid by the duplication of one inverted repeat of a transposon-like structure which itself mediates tetracycline resistance. Plasmid 3: 135–149

    PubMed  CAS  Google Scholar 

  • Benveniste R, Davies J (1973) Aminoglycoside antibiotic-inactivating enzymes in actinomycetes similar to those present in clinical isolates of antibiotic-resistant bacteria. Proc Natl Acad Sci USA 70: 2276–2280

    PubMed  CAS  Google Scholar 

  • Bernard K, Schrempf H, Goebel W (1978) Bacteriocin and antibiotic resistance plasmids in Bacillus cereus and Bacillus subtilis. J Bacteriol 133: 879–903

    Google Scholar 

  • Bertrand K, Postle K, Wray L, Reznikoff W (1981) Regulation of transposon Tn10 tetracycline resistance. In: Levy SB (ed) Molecular biology, pathogenicity and ecology of bacterial plasmids. Plenum, New York, p 582

    Google Scholar 

  • Bingham AHA, Bruton CJ, Atkinson T (1979) Isolation and partial characterisation of four plasmids from antibiotic resistant thermophilic bacilli. J Gen Microbiol 114:401– 408

    Google Scholar 

  • Bingham AHA, Bruton CJ, Atkinson T (1980) Characterisation of Bacillus stearothermophilus plasmid pAB124 and construction of deletion variants. J Gen Microbiol 119: 109–115

    PubMed  CAS  Google Scholar 

  • Blackwood RK, English AR (1977) Structure-activity relationships in the tetracycline series. In: Perlman D (ed) Structure-activity relationships in the semisynthetic antibiotics. Academic, London, p 397

    Google Scholar 

  • Bochner BR, Huang H-C, Schieven GL, Ames BN (1980) Positive selection for loss of tetracycline resistance. J Bacteriol 143: 926–933

    PubMed  CAS  Google Scholar 

  • Booth IR, Hamilton WA (1980) Energetics of bacterial amino acid transport. In: Payne JW (ed) Microorganisms and nitrogen sources. Wiley, Chichester, p 171

    Google Scholar 

  • Boronin AM, Sadovnikova LG (1972) Elimination by acridine dyes of oxytetracycline resistance in Actinomyces rimosus. Genetika 8: 174–176

    CAS  Google Scholar 

  • Boyer HW, Betlach M, Bolivar F, Rodriguez RL, Heyneker HL, Shine J, Goodman HM (1977) The construction of molecular cloning vehicles. In: Beers RF, Bassett EG (eds) Recombinant molecules: impact on science and society. Raven, New York, p 9

    Google Scholar 

  • Boynton JE, Gillham NW, Lambowitz AM (1980) Biogenesis of chloroplast and mitochondrial ribosomes. In: Chambliss G, Craven GR, Davies J, Davis K, Kahan L, Nomura M (eds) Ribosomes: structure, function and genetics. University Park Press, Baltimore, p 903

    Google Scholar 

  • Brammar WJ, Muir S, McMorris A (1980) Molecular cloning of the gene for the beta-lactamase of Bacillus licheniformis and its expression in Escherichia coli. Mol Gen Genet 178: 217–224

    PubMed  CAS  Google Scholar 

  • Brandsch R, Hefco E, Brandsch C, Rotinberg P, Keleman S (1980) Possible plasmid control of sporulation, soluble pigment production and tetracycline resistance in a wild Streptomyces sp. strain. J Antibiot 33: 1204–1205

    PubMed  CAS  Google Scholar 

  • Brimacombe R (1978) The structure of the bacterial ribosome. In: Stanier RY, Rogers HJ, Ward JB (eds) Relations between structure and function in the prokaryotic cell. Twenty-eighth symposium of the Society for General Microbiology. Cambridge University Press, Cambridge, p 1

    Google Scholar 

  • Brimacombe R, Nierhaus KH, Garrett RA, Wittman HG (1976) The ribosome of Escherichia coli. Progr Nucleic Acid Res 18: 1–44

    CAS  Google Scholar 

  • Brimacombe R, Stoffler G, Wittmann HG (1978) Ribosome structure. Annu Rev Biochem 47: 217–249

    PubMed  CAS  Google Scholar 

  • Brot N (1977) Translocation. In: Weissbach H, Pestka S (eds) Molecular mechanisms of protein biosynthesis. Academic, New York, p 375

    Google Scholar 

  • Brown BJ, Carlton BC (1980) Plasmid-mediated transformation in Bacillus megaterium. J Bacteriol 142: 508–512

    PubMed  CAS  Google Scholar 

  • Bukhari AI, Shapiro JL, Adhya SL (1977) DNA insertion elements, plasmids and episomes. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  • Burdett V, Inamine J, Rajagopalan S (1982) Heterogeneity of tetracycline resistance determinants in Streptococcus. J Bacteriol 149: 995–1004

    PubMed  CAS  Google Scholar 

  • Burt SJ, Woods DR (1976) Evolution of transferable antibiotic resistance in coliform bacteria from remote environments. Antimicrob Agents Chemother 10: 567–568

    PubMed  CAS  Google Scholar 

  • Calame K, Nakada D, Ihler G (1978) Location of ribosome-binding sites on the tetracycline resistance transposon Tn10. J Bacteriol 135: 668–674

    PubMed  CAS  Google Scholar 

  • Calos MP, Miller JH (1980) Transposable elements. Cell 20: 579–595

    PubMed  CAS  Google Scholar 

  • Capaldi RA, Vanderkooi G (1972) The low polarity of many membrane proteins. Proc Natl Acad Sci USA 69: 930–932

    PubMed  CAS  Google Scholar 

  • Cerna J, Rychlik I, Pulkrabek P (1969) The effect of antibiotics on the coded binding of peptidyl-tRNA to the ribosome and on the transfer of the peptidyl residue to puromycin. Eur J Biochem 9: 27–35

    PubMed  CAS  Google Scholar 

  • Chabbert YA, Scavizzi MR (1976) Chelocardin-inducible resistance in Escherichia coli bearing R plasmids. Antimicrob Agents Chemother 9: 36–41

    PubMed  CAS  Google Scholar 

  • Chambliss G, Craven GR, Davies J, Davis D, Kahan L, Nomura M (1979) Ribosomes, structure, function and genetics. University Park Press, Baltimore

    Google Scholar 

  • Chang ACY, Cohen SH (1974) Genome construction between bacterial species in vitro: replication and expression of Staphylococcus plasmid genes in Escherichia coli. Proc Natl Acad Sci USA 71: 1030–1034

    PubMed  CAS  Google Scholar 

  • Chopra I (1975) Induction of tetracycline resistance in Staphylococcus aureus in the absence of lipid synthesis. J Gen Microbiol 91: 433–436

    PubMed  CAS  Google Scholar 

  • Chopra I (1978) Plasmid determined tetracycline resistance in Escherichia coli K12: lack of evidence that resistance is related to changes in lipid metabolism. Biochem Soc Trans 6: 431–433

    PubMed  CAS  Google Scholar 

  • Chopra I, Ball PR (1982) Transport of antibiotics into bacteria. Adv Microb Physiol 23: 183–240

    PubMed  CAS  Google Scholar 

  • Chopra I, Eccles SJ (1977) Tetracycline resistance in Escherichia coli K12 is not associated with a decrease in cyclopropane fatty acid content. J Gen Microbiol 103: 393–396

    PubMed  CAS  Google Scholar 

  • Chopra I, Eccles SJ (1978) Diffusion of tetracycline across the outer membrane of Escherichia coli K-12: involvement of protein la. Biochem Biophys Res Commun 83:550– 557

    Google Scholar 

  • Chopra I, Howe TGB (1978) Bacterial resistance to the tetracyclines. Microbiol Rev 42: 707–724

    PubMed  CAS  Google Scholar 

  • Chopra I, Shales SW (1980) Comparison of the polypeptide composition of Escherichia coli outer membranes prepared by two methods. J Bacteriol 144: 425–427

    PubMed  CAS  Google Scholar 

  • Chopra I, Shales SW (1981) Susceptibility of protein synthesis in Escherichia coli to tetracycline and minocycline. J Gen Microbiol 124: 187–189

    PubMed  CAS  Google Scholar 

  • Chopra I, Lacey RW, Connolly J (1974) Biochemical and genetic basis of tetracycline resistance in Staphylococcus aureus. Antimicrob Agents Chemother 6: 397–404

    PubMed  CAS  Google Scholar 

  • Chopra I, Howe TGB, Linton AH, Linton KB, Richmond MH, Speller DCE (1981 a) The tetracyclines: prospects at the beginning of the 1980s. J Antimicrob Chemother 8: 5–21

    Google Scholar 

  • Chopra I, Shales SW, Ward JM, Wallace LJ (1981 b) Reduced expression of Tn10 mediated tetracycline resistance in Escherichia coli containing more than one copy of the transposon. J Gen Microbiol 126: 45–54

    Google Scholar 

  • Chopra I, Shales SW, Ball PR (1982). Tetracycline resistance determinants from groups A to D vary in their ability to confer decreased accumulation of tetracycline derivatives by Escherichia coli. J Gen Microbiol 128: 689–692

    PubMed  CAS  Google Scholar 

  • Chopra I, Shales SW, Ball PR (1983) Methods for studying bacterial resistance to the tetracyclines. In: Skinner FA, Russell AD, Quesnel LB (eds) Technical series of the Society for Applied Bacteriology, vol 18. Academic, London, p 223

    Google Scholar 

  • Clewell DB, Yagi Y (1977) Amplification of the tetracycline resistance determinant on plasmid pAMα1 in Streptococcus faecalis. In: Bukhari AI, Shapiro JA, Adhya L (eds) DNA insertion elements, plasmids and episomes. Cold Spring Harbor Laboratory, Cold Spring Harbor, p 235

    Google Scholar 

  • Clewell DB, Yagi Y, Bauer B (1975) Plasmid-determined tetracycline resistance in Streptococcus faecalis: evidence for gene amplification during growth in the presence of tetracycline. Proc Natl Acad Sci USA 72: 1720–1724

    PubMed  CAS  Google Scholar 

  • Cohen SN (1976) Transposable genetic elements and plasmid evolution. Nature 263: 731–738

    PubMed  CAS  Google Scholar 

  • Cohen SN, Chang ACY (1977) Revised interpretation of the origin of the pSCl0l plasmid. J Bacteriol 132: 734–737

    PubMed  CAS  Google Scholar 

  • Coibion C, Laszlo P (1979) Binding of the alkali metal cations to tetracycline. Biochem Pharmacol 28: 1367–1372

    PubMed  CAS  Google Scholar 

  • Coleman DC, Foster TJ (1981) Analysis of the reduction in expression of tetracycline resistance determined by transposon Tn10 in the multicopy state. Molec Gen Genet 182: 171–177

    PubMed  CAS  Google Scholar 

  • Coleman DC, Chopra I, Shales SW, Howe TGB, Foster TJ (1983) Analysis of tetracycline resistance encoded by transposon Tn10: deletion mapping of tetracycline-sensitive point mutations and identification of two structural genes. J Bacteriol 153: 921–929

    PubMed  CAS  Google Scholar 

  • Connamacher RH, Mandel HG (1965) Binding of tetracycline to the 30S ribosomes and polyuridilic acid. Biochem Biophys Res Commun 20: 98–103

    PubMed  CAS  Google Scholar 

  • Connamacher RH, Mandel HG (1968) Studies on the intracellular localization of tetracycline in bacteria. Biochem Biophys Acta 166: 475–486

    PubMed  CAS  Google Scholar 

  • Cooperman BS (1979) Photoaffinity labelling of ribosomes. In: Grossman L, Moldave K (eds) Methods in enzymology, vol 59. Academic, New York, p 796

    Google Scholar 

  • Cooperman BS (1980 a) Photolabile antibiotics as probes of ribosomal structure and function. Ann NY Acad Sci 346:302–323

    Google Scholar 

  • Cooperman BS ( 1980 b) Functional sites on the Escherichia coli ribosome as defined by affinity labeling. In: Chambliss G, Craven GR, Davies J, Davis K, Kahan L, Nomura M (eds) Ribosomes: structure, function and genetics. University Park Press, Baltimore, p 531

    Google Scholar 

  • Costerton JW, Cheng K-J (1975) The role of the bacterial cell envelope in antibiotic resistance. J Antimicrob Chemother 1: 363–377

    PubMed  CAS  Google Scholar 

  • Courvalin P, Fiandt M (1980) Aminoglycoside-modifying enzymes of Staphylococcus aureus: expression in Escherichia coli. Gene 9: 247–269

    PubMed  CAS  Google Scholar 

  • Craven GR, Gavin R, Fanning T (1969) The transfer RNA binding site of the 30S ribosome and the site of tetracycline inhibition. Cold Spring Harbor Symp Quant Biol 34: 129–137

    PubMed  CAS  Google Scholar 

  • Cundliffe E (1967) Antibiotics and polyribosomes, chlorotetracycline and polyribosomes of Bacillus megaterium. Mol Pharmacol 3: 401–411

    PubMed  CAS  Google Scholar 

  • Cundliffe E (1980) Antibiotics and prokaryotic ribosomes: action, interaction, and resistance. In: Chambliss G, Craven GR, Davies J, Davis K, Kahan L, Nomura M (eds) Ribosomes: structure, function and genetics. University Park Press, Balitore, p 555

    Google Scholar 

  • Cundliffe E, McQuillen K (1967) Bacterial protein synthesis: the effects of antibiotics. J Mol Biol 30: 137–146

    PubMed  CAS  Google Scholar 

  • Curiale MS, Levy SB (1982) Two complementation groups mediate tetracycline resistance determined by Tn10. J Bacteriol 151: 209–215

    PubMed  CAS  Google Scholar 

  • Curiale MS, McMurry LM, Levy SB (1984) Intracistronic complementation of the tetracycline resistance membrane protein of Tn10. J Bacteriol 157: 211–217

    PubMed  CAS  Google Scholar 

  • Dancer BN (1980) Transfer of plasmids among bacilli. J Gen Microbiol 121: 263–266

    PubMed  CAS  Google Scholar 

  • Davies J, Smith DI (1978) Plasmid-determined resistance to antimicrobial agents. Annu Rev Microbiol 32: 469–518

    PubMed  CAS  Google Scholar 

  • Davis CE, Anandan J (1970) The evolution of an R factor: a study of a preantibiotic community in Borneo. N Engl J Med 282: 117–122

    PubMed  CAS  Google Scholar 

  • Day LE (1966 a) Tetracycline inhibition of cell-free protein synthesis. I. Binding of tetracycline to components of the system. J Bacteriol 91: 1917–1923

    Google Scholar 

  • Day LE (1966 b) Tetracycline inhibition of cell-free protein synthesis. II. Effects of the binding of tetracycline to the components of the system. J Bacteriol 92: 197–203

    Google Scholar 

  • DelBene VE, Rogers M (1975) Comparison of tetracycline and minocycline transport in Escherichia coli. Antimicrob Agents Chemother 7: 801–806

    PubMed  Google Scholar 

  • Demain AL (1974) How do antibiotic producing micro-organisms avoid suicide? Ann NY Acad Sci 235: 601–612

    PubMed  CAS  Google Scholar 

  • Duggar BM (1948) Aureomycin: a product of the continuing search for new antibiotics. Ann NY Acad Sci 51: 177–181

    PubMed  CAS  Google Scholar 

  • Dunnick JK, O’Leary WM (1970) Correlation of bacterial lipid composition with antibiotic resistance. J Bacteriol 101: 892–900

    PubMed  CAS  Google Scholar 

  • Eccles SJ, Chopra I (1984) Biochemical and genetic characterization of the tet determinant of Bacillus plasmid pAB124. J Bacteriol 158: 134–140

    PubMed  CAS  Google Scholar 

  • Eccles S, Docherty A, Chopra I, Shales S, Ball P (1981) Tetracycline resistance genes from Bacillus plasmid pAB124 confer decreased accumulation of the antibiotic in Bacillus subtilis but not in Escherichia coli. J Bacteriol 145: 1417–1420

    PubMed  CAS  Google Scholar 

  • Ehrlich SD (1977) Replication and expression of plasmids from Staphylococcus aureus in Bacillus subtilis. Proc Natl Acad Sci USA 74: 1680–1682

    PubMed  CAS  Google Scholar 

  • Eisenstein BI, Beachey EH, Ofek I (1982) Differential effects of antibiotics on adhesins of antibiotic resistant strains of Escherichia coli. Scand J Infect Dis [Suppl] 33: 108–114

    CAS  Google Scholar 

  • Fayolle F, Privitera G, Sebald M (1980) Tetracycline transport in Bacteroides fragilis. Antimicrob Agents Chemother 18: 502–505

    PubMed  CAS  Google Scholar 

  • Fedorko J, Katz S, Allnoch H (1968) In vitro activity of minocycline, a new tetracycline. Am J Med Sci 255: 252–258

    PubMed  CAS  Google Scholar 

  • Fey G, Reiss M, Kersten H (1973) Interaction of tetracyclines with ribosomal subunits from Escherichia coli. A fluorometric investigation. Biochemistry 12: 1160–1164

    Google Scholar 

  • Fillingame RH (1976) Purification of the carbodiimide-reactive protein component of the ATP energy-transducing system of Escherichia coli. J Biol Chem 251: 6630–6637

    PubMed  CAS  Google Scholar 

  • Foster TJ (1975) R-factor tetracycline and chloramphenicol resistance in Escherichia coli K12 cmlB mutants. J Gen Microbiol 90: 303–310

    PubMed  CAS  Google Scholar 

  • Foster TJ (1977) Isolation and characterisation of mutants of R100-1 which express tetracycline resistance constitutively. FEMS Micro Lett 2: 271–274

    CAS  Google Scholar 

  • Foster TJ, Walsh A (1974) Phenotypic characterization of R-factor tetracycline resistance determinants. Genet Res 24: 333–343

    PubMed  CAS  Google Scholar 

  • Foster TJ, Howe TGB, Richmond KMV (1975) Translocation of the tetracycline resistance determinant from R100-1 to the Escherichia coli K-12 chromosome. J Bacteriol 124: 1153–1158

    PubMed  CAS  Google Scholar 

  • Franke AE, Clewell DB (1981) Evidence for a chromosome-borne resistance transposon (Tn916) in Streptococcus faecalis that is capable of “conjugal” transfer in the absence of a conjugative plasmid. J Bacteriol 145: 494–502

    PubMed  CAS  Google Scholar 

  • Franklin TJ (1963) The inhibition of incorporation of leucine into protein of cell-free systems from rat liver and Escherichia coli by chlorotetracycline. Biochem J 87: 449–453

    PubMed  CAS  Google Scholar 

  • Franklin TJ (1966) Mode of action of the tetracyclines. In: Newton BA, Reynolds PE (eds) Biochemical studies of antimicrobial drugs. Sixteenth symposium of the Society for General Microbiology. Cambridge University Press, Cambridge, p 192

    Google Scholar 

  • Franklin TJ (1967) Resistance of Escherichia coli to tetracyclines. Changes in permeability to tetracyclines in Escherichia coli bearing transferable resistance factors. Biochem J 105: 371–378

    PubMed  CAS  Google Scholar 

  • Franklin TJ, Foster SJ (1974) Expression of R-factor-mediated resistance to tetracycline in Escherichia coli minicells. Antimicrob Agents Chemother 5: 194–195

    PubMed  CAS  Google Scholar 

  • Franklin TJ, Higginson B (1970) Active accumulation of tetracycline by Escherichia coli. Biochem J 116: 287–297

    PubMed  CAS  Google Scholar 

  • Franklin TJ, Rownd R (1973) R-factor-mediated resistance to tetracycline in Proteus mir abilis. J Bacteriol 115: 235–242

    PubMed  CAS  Google Scholar 

  • Friend EJ, Warren M, Hopwood DA (1978) Genetic evidence for a plasmid controlling fertility in an industrial strain of Streptomyces rimosus. J Gen Microbiol 106: 201–206

    Google Scholar 

  • Gale EF (1966) The object of the exercise. In: Newton BA, Reynolds PE (eds) Biochemical studies of antimicrobial drugs. Sixteenth symposium of the Society for General Microbiology. Cambridge University Press, Cambridge, p 1

    Google Scholar 

  • Gale EF, Folkes JP (1953) The assimilation of amino acids by bacteria. 15. Actions of antibiotics on nucleic acid and protein synthesis in Staphylococcus aureus. Biochem J 53: 493–498

    Google Scholar 

  • Gale EF, Cundliffe E, Reynolds PE, Richmond MH, Waring MJ (1972) The molecular basis of antibiotic action. Wiley, London

    Google Scholar 

  • Gardner P, Smith DH, Beer H, Moellering RC (1969) Recovery of resistance ( R) factors from a drug-free community. Lancet 2: 774–776

    Google Scholar 

  • Garten W, Hindennach I, Henning U (1975) The major proteins of the Escherichia coli outer cell envelope membrane. Characterization of proteins II* and III, comparison of all proteins. Eur J Biochem 59: 215–221

    Google Scholar 

  • Gavrilova LP, Kostiashkina OE, Koreliansky VE, Rutkevitch NM, Spirin AS (1976) Factor-free (non enzymic) and factor dependent systems of translation of polyuridylic acid by Escherichia coli ribosomes. J Mol Biol 101: 537–552

    PubMed  CAS  Google Scholar 

  • Gayda RC, Markovitz A (1978) A cloned DNA Fragment specifying major outer membrane protein a in Escherichia coli K-12. J Bacteriol 136: 369–380

    PubMed  CAS  Google Scholar 

  • Gayda RC, Tanabe JH, Knigge KM, Markovitz A (1979) Identification by deletion analysis of an inducible protein required for pSC101-mediated tetracycline resistance. Plasmid 2: 417–425

    PubMed  CAS  Google Scholar 

  • George AM, Levy SB (1983 a) Amplifiable resistance to tetracycline, chloramphenicol, and other antibiotics in E. coli: involvement of a non-plasmid-determined efflux of tetracycline. J Bacteriol 155: 531–540

    Google Scholar 

  • George AM, Levy SB (1983 b) Genes in the major cotransduction gap of the E. coli K12 linkage map required for the expression of chromosomal resistance to tetracycline and other antibiotics. J Bacteriol 155: 541–548

    Google Scholar 

  • Goebel W, Kreft J, Burger KJ (1979) Molecular cloning in Bacillus subtilis. In: Timmis KN, Puhler A (eds) Plasmids of medical, environmental and commercial importance. Elsevier, Amsterdam, p 471

    Google Scholar 

  • Goldberg ML, Steitz JA (1974) Cistron specificity of 30S ribosomes heterologously reconstituted with components from Escherichia coli and Bacillus stearothermophilus. Biochemistry 13: 2123–2129

    PubMed  CAS  Google Scholar 

  • Goldman RA, Cooperman BS, Strycharz WA, Williams BA, Tritton TR (1980) Photoincorporation of tetracycline into Escherichia coli ribosomes. Identification of labeled proteins and functional consequences. FEBS Lett 118: 113–118

    Google Scholar 

  • Goldman RA, Hasan T, Hall CC, Strycharz WA, Cooperman BS (1983) Photoincorporation of tetracycline into Escherichia coli ribosomes. Identification of the major proteins photolabeled by native tetracycline and tetracycline photoproducts and implications for the inhibitory action of tetracycline on protein synthesis. Biochemistry 22: 359–368

    Google Scholar 

  • Gordon J (1969) Hydrolysis of guanosine 5’-triphosphate associated with binding of aminoacyl transfer ribonucleic acid to ribosomes. J Biol Chem 244: 5680–5686

    PubMed  CAS  Google Scholar 

  • Gottesman ME (1967) Reaction of ribosome-bound peptidyl transfer ribonucleic acid with aminoacyl transfer ribonucleic acid or puromycin. J Biol Chem 242: 5564–5571

    PubMed  CAS  Google Scholar 

  • Gottlieb D (1976) The production and role of antibiotics in soil. J Antibiot 29: 987–1000

    PubMed  CAS  Google Scholar 

  • Gray O, Chang S (1981) Molecular cloning and expression of Bacillus licheniformis β-lactamase gene in Escherichia coli and Bacillus subtilis. J Bacteriol 145: 422–428

    PubMed  CAS  Google Scholar 

  • Grininviene B, Chmieliauskaite V, Grinius L (1974) Energy-linked transport of permeant ions in E. coli cells: evidence for membrane potential generation by proton pump. Biochem Biophys Res Commun 56: 206–213

    Google Scholar 

  • Grunberg-Manago M, Gros G (1977) Initiation mechanisms of protein synthesis. In: Cohn W (ed) Progress in nucleic acid research and molecular biology, vol 20. Academic, New York, p 209

    Google Scholar 

  • Grunberg-Manago M, Buckingham RH, Cooperman BS, Hershey JWB (1978) Structure and function of the translation machinery. In: Stanier RY, Rogers HJ, Ward JB (eds) Relations between structure and function in the prokaryotic cell. Twenty-eight symposium of the Society for General Microbiology. Cambridge University Press, Cambridge, p 27

    Google Scholar 

  • Gryczan TJ, Contente S, Dubnau D (1978) Characterization of Staphylococcus aureus Plasmids introduced by transformation into Bacillus subtilis. J Bacteriol 134: 318–329

    PubMed  CAS  Google Scholar 

  • Gurgo C, Apirion D, Schlessinger D (1969) Polyribosome metabolism in Escherichia coli treated with chloramphenicol, neomycin, spectinomycin or tetracycline. J Mol Biol 45: 205–220

    PubMed  CAS  Google Scholar 

  • Hahn FE (1959) Mode of action of antibiotics. Proc Fourth Intern Congr Biochem 5: 104

    CAS  Google Scholar 

  • Harold FM, Papineau D ( 1972 a) Cation transport and electrogenesis by Streptococcus faecalis. I. The membrane potential. J Membrane Biol 8: 27–44

    Google Scholar 

  • Harold FM, Papineau D ( 1972 b) Cation transport and electrogenesis by Streptococcus faecalis. II. Proton and sodium extrusion. J Membrane Biol 8: 45–62

    Google Scholar 

  • Hash JH, Wishnick M, Miller PA (1964) On the mode of action of the tetracycline antibiotics in Staphylococcus aureus. J Biol Chem 239: 2070–2078

    PubMed  CAS  Google Scholar 

  • Hedstrom RC, Crider BP, Eagon RG (1982) Comparison of kinetics of active tetracycline uptake and active tetracycline efflux in sensitive and plasmid RP4-containing Pseudomonas putida. J Bacteriol 152: 255–259

    PubMed  CAS  Google Scholar 

  • Held WA, Gette WR, Nomura M (1974) Role of 16S ribosomal ribonucleic acid and the 30S ribosomal protein S12 in the initiation of natural messenger ribonucleic acid translation. Biochemistry 13: 2115–2122

    PubMed  CAS  Google Scholar 

  • Heman-Ackah SM (1976) Comparison of tetracycline action on Staphylococcus aureus and Escherichia coli by microbial kinetics. Antimicrob Agents Chemother 10: 223–228

    PubMed  CAS  Google Scholar 

  • Herrin GL, Russell DR, Bennett GN (1982) A stable derivative of pBR322 conferring increased tetracycline resistance and increased sensitivity to fusaric acid. Plasmid 7: 290–293

    PubMed  CAS  Google Scholar 

  • Hierowski M (1965) Inhibition of protein synthesis by chlorotetracycline in the Escherichia coli in vitro system. Proc Natl Acad Sci USA 53: 594–599

    PubMed  CAS  Google Scholar 

  • Hillen W, Schollmeier K (1983) Nucleotide sequence of the Tn10 encoded tetracycline resistance gene. Nucleic Acid Res 11: 525–539

    PubMed  CAS  Google Scholar 

  • Hillen W, Unger B (1982) Binding of four repressors to double stranded tet operator region stabilizes it against thermal denaturation. Nature 297: 700–702

    PubMed  CAS  Google Scholar 

  • Hillen W, Klock G, Kaffenberger I, Wray LV, Reznikoff WS (1982) Purification of the TET repressor and TET operator from the transposon Tn10 and characterization of their interaction. J Biol Chem 257: 6605–6613

    PubMed  CAS  Google Scholar 

  • Hillen W, Gatz C, Altschmied L, Schollmeier K, Meier I (1983) Control of expression of the Tn10-encoded tetracycline resistance genes. Equilibrium and kinetic investigation of the regulatory reactions. J Mol Biol 169: 707–721

    Google Scholar 

  • Himmelweit F (1960) The collected papers of Paul Ehrlich, vol 3, Pergamon, London

    Google Scholar 

  • Hirashima A, Kaji A (1972) Purification and properties of ribosome-releasing factor. Biochemistry 11: 4037–4044

    PubMed  CAS  Google Scholar 

  • Hirashima A, Childs G, Inouye M (1973) Differential inhibitory effects of antibiotics on the biosynthesis of envelope proteins of Escherichia coli. J Mol Biol 79: 373–389

    PubMed  CAS  Google Scholar 

  • Hlavka JJ, Bitha P (1966) Photochemistry IV. A photodeamination. Tetrahedron Lett 32: 3843–3846

    Google Scholar 

  • Hogenauer G, Turnowsky F (1972) The effects of streptomycin and tetracycline on codon-anticodon interactions. FEBS Lett 26: 185–188

    PubMed  CAS  Google Scholar 

  • Hopwood DA (1981) Genetic studies of antibiotics and other secondary metabolites. In: Glover SW, Hopwood DA (eds) Genetics as a tool in microbiology, 31st symposium of the Society for General Microbiology. Cambridge University Press, Cambridge, p 187

    Google Scholar 

  • Hopwood DA, Merrick MJ (1977) Genetics of antibiotic production. Bacteriol Rev 41: 595–635

    PubMed  CAS  Google Scholar 

  • Howley PM, Israel MA, Low M-F, Martin MA (1979) A rapid method for detecting and mapping homology between heterologous DNAs. Evaluation of Polyomavirus genomes. J Biol Chem 254: 4876–4883

    Google Scholar 

  • Igarashi K, Kaji A (1967) On the nature of two ribosomal sites for specific sRNA binding. Proc Natl Acad Sci USA 58: 1971–1976

    PubMed  CAS  Google Scholar 

  • Igarashi K, Kaji A (1970) Relationship between sites 1, 2 and acceptor, donor sites for the binding of aminoacyl tRNA to ribosomes. Eur J Biochem 14: 41–46

    PubMed  CAS  Google Scholar 

  • Igarashi K, Ishitsuka H, Kaji A (1969) Comparative studies on the mechanism of action of lincomycin, streptomycin and erythromycin. Biochem Biophys Res Commun 37: 499–504

    PubMed  CAS  Google Scholar 

  • Inoue M, Kazawa T, Mitsuhashi S (1977) Antibacterial and inducer activities for tetracycline resistance by its derivatives and analogues. Microbiol Immunol 21: 59–67

    PubMed  CAS  Google Scholar 

  • Inouye M, Halegoua S (1980) Secretion and membrane localization of proteins in Escherichia coli. CRC Crit Rev Biochem 7: 339–371

    PubMed  CAS  Google Scholar 

  • Isono K, Isono S (1976) Lack of ribosomal protein SI in Bacillis stearothermophilus. Proc Natl Acad Sci USA 73: 767–770

    PubMed  CAS  Google Scholar 

  • IUPAC-IUB Commission on Biochemical Nomenclature (1969) A one letter notation for amino acid sequences, tentative rules. Biochem J 113: 1–4

    Google Scholar 

  • Jahn G, Laufs R, Kaulfers P-M, Kolenda H (1979) Molecular nature of two Haemophilus influenzae R factors containing resistances and the multiple integration of drug resistance transposons. J Bacteriol 138: 584–597

    PubMed  CAS  Google Scholar 

  • Jerez C, Sandoval A, Allende J, Henes C, Ofengand J (1969) Specificity of the interaction of aminoacyl ribonucleic acid with a protein-guanosine triphosphate complex from wheat embryo. Biochemistry 8: 3006–3014

    PubMed  CAS  Google Scholar 

  • Jorgensen RA, Reznikoff WS (1979) Organization of structural and regulatory genes that mediate tetracycline resistance in transposon 10. J Bacteriol 138: 705–714

    PubMed  CAS  Google Scholar 

  • Jorgensen RA, Berg D, Reznikoff W (1978) Genetic organization in the transposable tetracycline resistance determinant Tn10. In: Schlessinger D (ed) Microbiology 1978. American Society for Microbiology, Washington, p 181

    Google Scholar 

  • Jorgensen RA, Berg DE, Allet B, Reznikoff WS (1979) Restriction enzyme cleavage map of Tn10, a transposon which encodes tetracycline resistance. J Bacteriol 137: 681–685

    PubMed  CAS  Google Scholar 

  • Kahan L, Winkelmann DA, Lake JA (1981) Ribosomal proteins S3, S6, S8 and S10 of Escherichia coli localized on the external surface of the small subunit by immune electron microscopy. J Mol Biol 145: 193–214

    PubMed  CAS  Google Scholar 

  • Kaji A, Ryoji M (1979) Tetracycline. In: Hahn FE (ed) Antibiotics, vol 5, Springer, Berlin Heidelberg New York, p 304

    Google Scholar 

  • Kaulfers KM, Laufs R, Jahn G (1978) Molecular properties of transmissible R factors of Haemophilus influenzae determining tetracycline resistance. J Gen Microbiol 105: 243–252

    PubMed  CAS  Google Scholar 

  • Kersten H, Fey G (1971) On the mechanism of tetracycline action and resistance: association of tetracyclines with ribosomes and ribosomal subunits studied by a fluorometric method. In: Krčméry V, Rosival L, Watanabe T (eds) Bacterial plasmids and antibiotic resistance. First international symposium on infectious antibiotic resistance. Springer, Berlin Heidelberg New York, p 399

    Google Scholar 

  • Kleckner N (1977) Translocatable elements in procaryotes. Cell 11: 11–23

    PubMed  CAS  Google Scholar 

  • Kleckner N, Chan RK, Tye B-K, Botstein D (1975) Mutagenesis by insertion of a drug-resistance element carrying an inverted repetition. J Mol Biol 97: 561–575

    PubMed  CAS  Google Scholar 

  • Kono M, Sasatsu M, Aoki T (1983) R plasmids in Corynebacterium xerosis strains. Antimicrob Agents Chemother 23: 506–508

    PubMed  CAS  Google Scholar 

  • Kopylova-Sviridova TN, Soukovatitsin VV, Fodor I (1979) Synthesis of proteins coded by plasmid vectors of pev series ( ApR, TcR) and their recombinant derivatives (pDm) in Escherichia coli minicells. Gene 7: 121–139

    Google Scholar 

  • Kreft J, Bernhard K, Goebel W (1978) Recombinant plasmids capable of replication in Bacillus subtilis and Escherichia coli. Molec Gen Genet 162: 59–67

    PubMed  CAS  Google Scholar 

  • Kreft J, Burger KJ, Goebel W (1983) Expression of antibiotic resistance genes from Escherichia coli in Bacillus subtilis. Molec Gen Genet 190: 384–389

    PubMed  CAS  Google Scholar 

  • Kuzina ZA, Belousova II, Tereshin IM (1977) Lipid composition of tetracycline-sensitive and -resistant Escherichia coli cells. Microbiology 46: 210–214

    Google Scholar 

  • Lacey RW (1975) Antibiotic resistance plasmids of Staphylococcus aureus and their clinical importance. Bacteriol Rev 39: 1–32

    PubMed  CAS  Google Scholar 

  • Laskin AI (1967) Tetracyclines. In: Gottlieb D, Shaw PD (eds) Antibiotics, vol 1. Springer, Berlin Heidelberg New York, p 331

    Google Scholar 

  • Laskin AI, Chan WM (1964) Inhibition by tetracyclines of polyuridylic acid directed phenylalanine incorporation in Escherichia coli by cell-free extracts. Biochem Biophys Res Commun 14: 137–142

    PubMed  CAS  Google Scholar 

  • Leeson LJ, Weidenheimer JF (1969) Stability of tetracycline and riboflavin. J Pharm Sci 58: 355–357

    PubMed  CAS  Google Scholar 

  • Leij LD, Kingma J, Witholt B (1979) Nature of the regions involved in the insertion of newly synthesized protein into the outer membrane of Escherichia coli. Biochim Biophys Acta 553: 224–234

    PubMed  Google Scholar 

  • Leive L, Telesetsky S, Coleman WG, Carr D (1984) Tetracyclines of various hydrophobicities as a probe for permeability of E. coli outer membranes. Antimicrob Agents Chemother 25: 539–544

    PubMed  CAS  Google Scholar 

  • Levy SB (1975) The relation of a tetracycline-induced R factor membrane protein to tetracycline resistance. In: Mitsuhashi S, Rosival L, Kremery V (eds) Drug-inactivating enzymes and antibiotic resistance. Springer, Berlin Heidelberg New York, p 215

    Google Scholar 

  • Levy SB (1981) The tetracyclines: microbial sensitivity and resistance. In: Grassi GG, Sabath LD (eds) New trends in antibiotics: research and therapy. Elsevier, Amsterdam, p 27

    Google Scholar 

  • Levy SB, McMurry L, Onigman P, Saunders RM (1977) Plasmid-mediated tetracycline resistance in Escherichia coli. In: Drews J, Hogenauer G (eds) Topics in infectious diseases, vol II. Springer, Berlin Heidelberg New York, p 177

    Google Scholar 

  • Lindley EV, Munske GR, Magnuson JA (1984) Kinetic analysis of tetracycline accumulation by Streptococcus faecalis. J Bacteriol 158: 334–336

    PubMed  CAS  Google Scholar 

  • Livneh Z (1983) Directed mutagenesis method for analysis of mutagen specificity: application to ultra-violet induced mutagenesis. Proc Natl Acad Sci USA 80: 237–241

    PubMed  CAS  Google Scholar 

  • Low KB, Porter DD (1978) Modes of gene transfer and recombination in bacteria. Annu Rev Genet 12: 249–287

    PubMed  CAS  Google Scholar 

  • Lucas-Lenard J, Haenni AL (1968) Requirement of guanosine 5’-triphosphate for ribosomal binding of aminoacyl-sRNA. Proc Natl Acad Sci USA 59: 554–559

    PubMed  CAS  Google Scholar 

  • Lucas-Lenard J, Tao P, Haenni AL (1969) Further studies on bacterial polypeptide elongation. Cold Spring Harbour Symp Quant Biol 34: 455–462

    CAS  Google Scholar 

  • Maloy SR, Nunn WD (1981) Selection for loss of tetracycline resistance by Escherichia coli. J Bacteriol 145: 1110–1112

    PubMed  CAS  Google Scholar 

  • Marchalonis JJ, Weltman JK (1971) Relatedness among proteins: a new method of estimation and its application to immunoglobulins. Comp Biochem Physiol 38B: 609–625

    CAS  Google Scholar 

  • Marcos D, Woods DR (1973) Ecology of R factors: a study of urban and remote communities and their environments. S Afr Med J 47: 340–341

    PubMed  CAS  Google Scholar 

  • Mare IJ (1968) Incidence of R factors among Gram-negative bacteria in drug-free human and animal communities. Nature 220: 1046–1047

    PubMed  CAS  Google Scholar 

  • Marshall B, Tachibana C, Levy SB (1983) Frequency of tetracycline resistance determinants among lactose-fermenting coliforms. Antimicrob Agents Chemother 24: 835–840

    PubMed  CAS  Google Scholar 

  • Mattes R, Burkardt HJ, Schmitt R (1979) Repetition of tetracycline resistance determinant genes on R plasmid pRSD1 in Escherichia coli. Molec Gen Genet 168: 173–184

    PubMed  CAS  Google Scholar 

  • Maxwell IH (1968) Studies of the binding of tetracyclines to ribosomes in vitro. Mol Pharmacol 4: 25–37

    PubMed  CAS  Google Scholar 

  • May JW, Houghton RH, Perret CJ (1964) The effect of growth at elevated temperatures on some heritable properties of Staphylococcus aureus. J Gen Microbiol 37: 157–169

    PubMed  CAS  Google Scholar 

  • McMurry LM, Levy SB (1978) Two transport systems for tetracycline in sensitive Escherichia coli: critical role for an initial rapid uptake system insensitive to energy inhibitors. Antimicrob Agents Chemother 14: 201–209

    PubMed  CAS  Google Scholar 

  • McMurry L, Petrucci RE, Levy SB (1980) Active efflux of tetracycline encoded by four genetically different tetracycline resistance determinants in Escherichia coli. Proc Natl Acad Sci USA 77: 3974–3977

    PubMed  CAS  Google Scholar 

  • McMurry L, Cullinane J, Petrucci R, Levy SB ( 1981 a) Active uptake of tetracycline in membrane vesicles of sensitive Escherichia coli. In: Levy SB (ed) Molecular biology, pathogenicity and ecology of bacterial plasmids. Plenum, New York, p 633

    Google Scholar 

  • McMurry LM, Cullinane JC, Petrucci RE, Levy SB (1981 b) Active uptake of tetracycline by membrane vesicles from susceptible Escherichia coli. Antimicrob Agents Chemother 20: 307–313

    Google Scholar 

  • McMurry LM, Cullinane JC, Levy SB (1982) Transport of the lipophilic analog minocycline differs from that of tetracycline in susceptible and resistant Escherichia coli strains. Antimicrob Agents Chemother 22: 791–799

    PubMed  CAS  Google Scholar 

  • McQuillen K (1966) The physical organization of nucleic acid and protein synthesis. In: Pollock MR, Richmond MH (eds) Function and structure in microorganisms. Fifteenth symposium of the Society for General Microbiology. Cambridge University Press, Cambridge, p 134

    Google Scholar 

  • Mendez B, Tachibana C, Levy SB (1980) Heterogeneity of tetracycline resistance determinants. Plasmid 3: 99–108

    PubMed  CAS  Google Scholar 

  • Mikulik K, Karnetova J, Quyen N, Blaumerova M, Komersova I, Varek Z (1971) Interaction of tetracycline with protein synthesizing system of Streptomyces aureofaciens. J Antibiot 24: 801–809

    PubMed  CAS  Google Scholar 

  • Mitscher LA (1978) The chemistry of the tetracycline antibiotics. Dekker, New York

    Google Scholar 

  • Moyed HS, Bertrand KP (1983) Mutations in multicopy Tn10 tet plasmids that confer resistance to inhibitory effects of inducers of tet gene expression. J Bacteriol 155: 557–564

    PubMed  CAS  Google Scholar 

  • Moyed HS, Nguyen TT, Bertrand KP (1983) Multicopy Tn10 tet plasmids confer sensitivity to induction of tet gene expression. J Bacteriol 155: 549–556

    PubMed  CAS  Google Scholar 

  • Munske GR, Lindley EV, Magnuson JA (1984) Streptococcus faecalis proton gradients and tetracycline transport. J Bacteriol 158: 49–54

    PubMed  CAS  Google Scholar 

  • Nguyen TT, Postle K, Bertrand KP (1983) Sequence homology between the tetracycline-resistance determinants of Tn10 and pBR322. Gene 25: 83–92

    PubMed  CAS  Google Scholar 

  • Nierhaus KH, Wittmann HG (1980) Ribosomal function and its inhibition by antibiotics in prokaryotes. Naturwissenschaften 67: 234–250

    PubMed  CAS  Google Scholar 

  • Nikaido H (1976) Outer membrane of Salmonella typhimurium. Transmembrane diffusion of some hydrophobic substances. Biochim Biophys Acta 433: 118–132

    PubMed  CAS  Google Scholar 

  • Nikaido H, Nakae T (1979) The outer membrane of Gram-negative bacteria. Adv Microb Physiol 20: 163–250

    PubMed  CAS  Google Scholar 

  • Nikaido H, Luckey M, Rosenberg EY (1980) Non-specific and specific diffusion channels in the outer membrane of Escherichia coli. J Supramol Struct 13: 305–313

    PubMed  CAS  Google Scholar 

  • Noel D, Nikaido K, Ames F-L (1979) A single amino acid substitution in a histidine-transport protein drastically alters its mobility in sodium dodecyl sulfate Polyacrylamide gel electrophoresis. Biochemistry 18: 4159–4165

    PubMed  CAS  Google Scholar 

  • Ofengand J (1980) The topography of tRNA binding sites on the ribosome. In: Chambliss G, Craven GR, Davies J, Davis K, Kahan L, Nomura M (eds) Ribosomes: structure, function and genetics. University Park Press, Baltimore, p 497

    Google Scholar 

  • O’Grady F (1982) Antibiotics in the 1980s. Adv Med 18: 55–71

    Google Scholar 

  • Old RW, Primrose SB (1980) Principles of gene manipulation: an introduction to genetic engineering. Blackwell, Oxford

    Google Scholar 

  • Osawa S, Hori H (1980) Molecular evolution of ribosomal components. In: Chambliss G, Craven GR, Davies J, Davis K, Kahan L, Nomura M (eds) Ribosomes: structure, function and genetics. University Park Press, Baltimore, p 333

    Google Scholar 

  • Osborn MJ, Wu HCP (1980) Proteins of the outer membrane of Gram-negative bacteria. Annu Rev Microbiol 34: 369–422

    PubMed  CAS  Google Scholar 

  • Peden KWC (1983) Revised sequence of the tetracycline-resistance gene of pBR322. Gene 22: 277–280

    PubMed  CAS  Google Scholar 

  • Pestka S, Nirenberg M (1966) Codeword recognition on 30S ribosomes. Cold Spring Harbour Symp Quant Biol 31: 641–656

    CAS  Google Scholar 

  • Petit A, Tempe J, Kerr A, Holsters M, Montagu M van, Schell J (1978) Substrate induction of conjugative activity of Agrobacterium tumefaciens Ti plasmids. Nature 271: 570–571

    CAS  Google Scholar 

  • Phillips S, Novick RP (1979) Tn 554 - a site-specific repressor-controlled transposon in Staphylococcus aureus. Nature 278: 476–478

    PubMed  CAS  Google Scholar 

  • Piovant M, Varenne S, Pages JM, Lazdunski C (1978) Preferential sensitivity of syntheses of exported proteins to translation inhibitors of low polarity in Escherichia coli. Mol Gen Genet 164: 265–274

    PubMed  CAS  Google Scholar 

  • Polak J, Novick RP (1982) Closely related plasmids from Staphylococcus aureus and soil bacilli. Plasmid 7: 152–162

    PubMed  CAS  Google Scholar 

  • Pratt JM, Holland IB, Spratt BG (1981) Precursor forms of penicillin binding proteins 5 and 6 of the Escherichia coli cytoplasmic membrane. Nature 293: 307–309

    PubMed  CAS  Google Scholar 

  • Prewo R, Stezowski JJ, Kirchlechner R (1980) Chemical-structural properties of tetracycline derivatives. 10. The 6-thiatetracyclines. J Am Chem Soc 102: 7021–7026

    CAS  Google Scholar 

  • Privitera G, Sebald M, Fayolle F (1979) Common regulatory mechanism of expression and conjugative ability of a tetracycline resistance plasmid in Bacteroides fragilis. Nature 278: 657–659

    PubMed  CAS  Google Scholar 

  • Privitera G, Fayolle F, Sebald M (1981) Resistance to tetracycline, erythromycin and clindamycin in the Bacteroides fragilis group: inducible versus constitutive tetracycline resistance. Antimicrob Agents Chemother 20: 314–320

    PubMed  CAS  Google Scholar 

  • Rambach A, Hogness DS (1977) Translation of Drosophila melanogaster sequences in Escherichia coli. Proc Natl Acad Sci USA 74: 5041–5045

    PubMed  CAS  Google Scholar 

  • Ravel JM (1967) Demonstration of a guanosine triphosphate-dependent enzymatic binding of aminoacyl-ribonucleic acid to Escherichia coli ribosomes. Proc Natl Acad Sci USA 57: 1811–1816

    PubMed  CAS  Google Scholar 

  • Ravel JM, Shorey RL, Garner CW, Dawkins RC, Shive W (1969) The role of an aminoacyl-tRNA-GTP-protein complex in polypeptide synthesis. Cold Spring Harbour Symp Quant Biol 34: 321–330

    CAS  Google Scholar 

  • Reboud A-M, Dubost S, Reboud J-P (1982) Photoincorporation of tetracycline into rat-liver ribosomes and subunits. Eur J Biochem 124: 389–396

    PubMed  CAS  Google Scholar 

  • Reeve ECR (1966) Characteristics of some single step mutants to chloramphenicol resistance in Escherichia coli K12 and their interactions with R-factor genes. Genet Res 7: 281–286

    PubMed  CAS  Google Scholar 

  • Reeve ECR (1968) Genetic analysis of some mutations causing resistance to tetracycline in Escherichia coli K12. Genet Res 11: 303–309

    PubMed  CAS  Google Scholar 

  • Reeve ECR (1978) Evidence that there are two types of determinant for tetracycline resistance among R-factors. Genet Res 31: 75–84

    PubMed  CAS  Google Scholar 

  • Reeve ECR, Robertson JM (1975) The characteristics of eleven mutants of R-factor R57 constitutive for tetracycline resistance, selected and tested in Escherichia coli Kl2. Genet Res 25: 297–312

    PubMed  CAS  Google Scholar 

  • Rendi R, Ochoa S (1961) Enzyme specificity in activation and transfer of amino acids to ribonucleoprotein particles. Science 133: 1367

    Google Scholar 

  • Revel M, Greenshpan H, Herzberg M (1970) Specificity in the binding of Escherichia coli ribosomes to natural messenger RNA. Eur J Biochem 16: 117–122

    PubMed  CAS  Google Scholar 

  • Ringrose PS, Higgins JE (1974) The interrelationship of tetracycline resistance, decynoyl-N-acetyl cysteamine and membrane fatty acid composition in Escherichia coli. J Antibiot 27: 833–837

    PubMed  CAS  Google Scholar 

  • Roberts RJ (1980) Directory of restriction endonucleases. In: Grossman L, Moldave K (eds) Methods in enzymology, vol 65. Academic, New York, p 1

    Google Scholar 

  • Rodriguez RL, West RW, Heyneker HL, Bolivar F, Boyer HW (1979) Characterizing wild-type and mutant promoters of the tetracycline resistance gene in pBR313. Nucleic Acids Res 6: 3267–3287

    PubMed  CAS  Google Scholar 

  • Rosen BP, Kashkett ER (1978) Energetics of active transport. In: Rosen BP (ed) Bacterial transport. Dekker, New York, p 559

    Google Scholar 

  • Rubens CE, McNeill WF, Farrar WE (1979) Evolution of multiple-antibiotic-resistance plasmids mediated by transposable plasmid deoxyribonucleic acid sequences. J Bacteriol 140: 713–719

    PubMed  CAS  Google Scholar 

  • Salton MRJ, Owen P (1976) Bacterial membrane structure. Annu Rev Microbiol 30: 451–482

    PubMed  CAS  Google Scholar 

  • Samra Z, Krausz-Steinmetz J, Sompolinsky D (1978) Transport of tetracyclines through the bacterial cell membrane assayed by fluorescence: a study with susceptible and resistant strains of Staphylococcus aureus and Escherichia coli. Microbios 21: 7–22

    PubMed  CAS  Google Scholar 

  • Sancar A, Hack AM, Rupp WD (1979) Simple method for identification of plasmid-coded proteins. J Bacteriol 137: 692–693

    PubMed  CAS  Google Scholar 

  • Sandermann H, Strominger JL (1971) C55-isoprenoid alcohol Phosphokinase: an extremely hydrophobic protein from the bacterial membrane. Proc Natl Acad Sci USA 68: 2441–2443

    PubMed  CAS  Google Scholar 

  • Sarker S, Thach RE (1968) Inhibition of formylmethionyl-transfer RNA binding to ribosomes by tetracycline. Proc Natl Acad Sci USA 60: 1479–1486

    Google Scholar 

  • Schaefler S, Francois W, Ruby CL (1976) Minocycline resistance in Staphylococcus aureus: effect on phage susceptibility. Antimicrob Agents Chemother 9: 600–613

    PubMed  CAS  Google Scholar 

  • Scherer GFE, Walkinshaw MD, Arnott S, Marre DJ (1980) The ribosome binding site recognized by Escherichia coli ribosomes have regions with signal character in both the leader and protein coding segments. Nucleic Acids Res 8: 3895–3907

    PubMed  CAS  Google Scholar 

  • Schmidt FJ, Jorgensen RA, Wilde M De, Davies JE (1981) A specific tetracycline-induced, low-molecular weight RNA encoded by the inverted repeat of Tn10 (IS 10). Plasmid 6: 148–150

    PubMed  CAS  Google Scholar 

  • Schmitt R, Bernard E, Mattes R (1979) Characterization of Tn1721, a new transposon containing tetracycline resistance capable of amplification. Mol Gen Genet 172: 53–65

    PubMed  CAS  Google Scholar 

  • Schoflfl F, Pühler A (1979 a) Intramolecular amplification of tetracycline resistance determinant of transposon Tn1771 in Escherichia coli. Genet Res 33: 253–260

    Google Scholar 

  • Schoffl F, Pühler A (1979 b) The plasmid system of Escherichia coli strain UR12644. Genet Res 34: 287–301

    Google Scholar 

  • Schoflfl F, Arnold W, Pühler A, Altenbuchner J, Schmitt R (1981) The tetracycline resistance transposons Tn1721 and Tn1771 have 3 38-base-pair repeats and generate 5- base-pair direct repeats. Mol Gen Genet 181: 87–94

    Google Scholar 

  • Schwartz SN, Medoff G, Kobayashi GS, Kwan CN, Schlessinger D (1972) Antifungal properties of polymyxin B and its potentiation of tetracycline as an antifungal agent. Antimicrob Agents Chemother 2: 36–40

    PubMed  CAS  Google Scholar 

  • Scolnick E, Tompkins R, Caskey T (1968) Release factors differing in specificity for termination codon. Proc Natl Acad Sci USA 61: 768–774

    PubMed  CAS  Google Scholar 

  • Shales SW, Chopra I, Ball PR (1980) Evidence for more than one mechanism of plasmid-determined tetracycline resistance in Escherichia coli. J Gen Microbiol 121: 221–229

    PubMed  CAS  Google Scholar 

  • Shine J, Dalgarno L (1974) The 3’-terminal sequence of Escherichia coli 16S ribosomal RNA: complementarity to nonsense triplets and ribosome binding sites. Proc Natl Acad Sci USA 71: 1342–1346

    PubMed  CAS  Google Scholar 

  • Shine J, Dalgarno L (1975) Determinant of cistron specificity in bacterial ribosomes. Nature 254: 34–36

    PubMed  CAS  Google Scholar 

  • Skoultchi A, Ono Y, Waterson J, Lengyel P (1969) Peptide chain elongation. Cold Spring Harbour Symp Quant Biol 34: 437–454

    CAS  Google Scholar 

  • Skoultchi A, Ono Y, Waterson J, Lengyel P (1970) Peptide chain elongation: indications for the binding of an amino acid polymerization factor, guanosine 5’-triphosphate-aminoacyl transfer ribonucleic acid complex to the messenger-ribosome complex. Biochemistry 9: 508–514

    PubMed  CAS  Google Scholar 

  • Smith DH (1967) R factor infection of Escherichia coli lyophilized in 1946. J Bacteriol 94: 2071–2072

    PubMed  CAS  Google Scholar 

  • Smith MCM, Chopra I (1983) Limitations of a fluorescence assay for studies on tetracycline transport into Escherichia coli. Antimicrob Agents Chemother 23: 175–178

    PubMed  CAS  Google Scholar 

  • Smith MCM, Chopra I (1984) Energetics of tetracycline transport into Escherichia coli. Antimicrob Agents Chemother 25: 446–449

    PubMed  CAS  Google Scholar 

  • Smith MD, Hazum S, Guild WR (1981) Homology among “tet” determinants in conjugative elements of streptococci. J Bacteriol 148: 232–240

    PubMed  CAS  Google Scholar 

  • Smythies JR, Benington F, Morin RD (1972) On the molecular mechanism of action of the tetracyclines. Experientia 28: 1253–1254

    PubMed  CAS  Google Scholar 

  • Sompolinsky D, Krausz J (1973) Action of 12 tetracyclines on susceptible and resistant strains of Staphylococcus aureus. Antimicrob Agents Chemother 4: 237–247

    PubMed  CAS  Google Scholar 

  • Sompolinsky D, Samra Z, Steinmetz-Krausz J, Assaf O, Passal T (1979) Studies on plasmid-borne resistance to tetracycline. In: Shafferman A, Cohen A, Smith SR (eds) Extrachromosomal inheritance in bacteria. Karger, Basel, p 198

    Google Scholar 

  • Starlinger P (1980) 1S elements and transposons. Plasmid 3:241–259

    Google Scholar 

  • Steitz JA (1973) Specific recognition of non-initiator regions in RNA bacteriophage messengers by ribosomes of Bacillus stearothermophilus. J Mol Biol 73: 1–16

    PubMed  CAS  Google Scholar 

  • Stock JB, Rauch B, Roseman S (1977) Periplasmic space in Salmonella typhimurium and Escherichia coli. J Biol Chem 252: 7850–7861

    PubMed  CAS  Google Scholar 

  • Stoffler G, Wittman HG (1977) Primary structure and three dimensional arrangement of proteins within the Escherichia coli ribosome. In: Weissbach H, Pestka S (eds) Molecular mechanisms of protein biosynthesis. Academic, New York, p 117

    Google Scholar 

  • Strel’tsov SA, Kukhanova MK, Gurskii GV, Kraerskii AA, Belyavskaya IV, Viktorova LS, Treboganov AD, Gottikh BD (1975) Binding of hydroxytetracycline to E. coli ribosomes. Mol Biol 9: 729–738 (English edition)

    Google Scholar 

  • Stuber D, Bujard H (1981) Organization of transcriptional signals in plasmids pBR322 and pACYC184. Proc Natl Acad Sci USA 78: 167–171

    PubMed  CAS  Google Scholar 

  • Suarez G, Nathans D (1965) Inhibition of aminoacyl tRNA binding to ribosomes by tetracycline. Biochem Biophys Res Commun 18: 743–750

    CAS  Google Scholar 

  • Suling WJ, O’Leary WM (1977) Lipids of antibiotic-resistant and -susceptible members of the Enterobacteriaceae. Can J Microbiol 23: 1045–1051

    PubMed  CAS  Google Scholar 

  • Sutcliffe JG (1978) Complete nucleotide sequence of the Escherichia coli plasmid pBR322. Cold Spring Harbor Symp Quant Biol 43: 77–90

    Google Scholar 

  • Suzuka I, Kaji H, Kaji A (1966) Binding of specific sRNA to 30S ribosomal subunits: effects of 50S ribosomal subunits. Proc Natl Acad Sci USA 55: 1483–1490

    PubMed  CAS  Google Scholar 

  • Szekely M (1980) From DNA to protein, the transfer of genetic information. Macmillan, London

    Google Scholar 

  • Tait RC, Boyer HW (1978 a) On the nature of tetracycline resistance controlled by the plasmid pSC101. Cell 13: 73–81

    Google Scholar 

  • Tait RC, Boyer HW (1978 b) Restriction endonuclease mapping of pSC101 and pMB9. Mol Gen Genet 164: 285–288

    Google Scholar 

  • Tanaka S, Igarashi K, Kaji A (1972) Studies on the action of tetracycline and puromycin. J Biol Chem 247: 45–50

    PubMed  CAS  Google Scholar 

  • Taylor DE, DeGrandis SA, Karmali MA, Fleming PC (1980) Transmissible tetracycline resistance in Campylobacter jejuni. Lancet II: 797

    Google Scholar 

  • Tenover FC, Bronsdon MA, Gordon KP, Plorde JL (1983) Isolation of plasmids encoding tetracycline resistance from Campylobacter jenuni strains isolated from simians. Antimicrob Agents Chemother 23: 320–322

    PubMed  CAS  Google Scholar 

  • Traut RR, Monro RE (1964) The puromycin reaction and its relation to protein synthesis. J Mol Biol 10: 63–72

    PubMed  CAS  Google Scholar 

  • Tritton TR (1977) Ribosome–tetracycline interaction. Biochemistry 16: 4133–4138

    PubMed  CAS  Google Scholar 

  • Uehara Y, Hori M, Umezawa H (1976) Specific inhibition of the termination process of protein synthesis by negamycin. Biochim Biophys Acta 442: 251–262

    PubMed  CAS  Google Scholar 

  • Uhlin BE, Nordstrom K (1977) R plasmid gene dosage effects in Escherichia coli Kl2: copy mutants of the R plasmid R1 drd-19. Plasmid 1: 1–7

    PubMed  CAS  Google Scholar 

  • Valcavi U (1981) Tetracyclines: chemical aspects and some structure-activity relationships. In: Grassi GG, Sabath LD (eds) New trends in antibiotics: research and therapy. Elsevier, Amsterdam, p 3

    Google Scholar 

  • van den Bogert C, Kroon AM (1981) Tissue distribution and effects on mitochondrial protein synthesis of tetracyclines after prolonged continuous intravenous administration to rats. Biochem Pharmacol 30: 1706–1709

    Google Scholar 

  • van Embden J, Cohen SN (1973) Molecular and genetic studies of an R factor system consisting of independent transfer and drug resistance plasmids. J Bacteriol 116: 699–709

    PubMed  Google Scholar 

  • Vosbeck K, Mett H, Huber U, Bohn J, Petignat M (1982) Effects of low concentrations of antibiotics on Escherichia coli adhesion. Antimicrob Agents Chemother 21: 864–869

    PubMed  CAS  Google Scholar 

  • Waters SH, Rogowsky P, Grinsted J, Altenbuchner J, Schmitt R (1983) The tetracycline resistance determinants of RP1 and Tn1721: nucleotide sequence analysis. Nucleic Acid Res 11: 6089–6105

    PubMed  CAS  Google Scholar 

  • Weckesser J, Magnuson JA (1976) Light-induced tetracycline accumulation by Rhodopseudomonas sphaeroides. J Supramol Struct 4: 515–520

    PubMed  CAS  Google Scholar 

  • Weissbach H (1980) Soluble factors in protein synthesis. In: Chambliss G, Craven GR, Davies J, Davis K, Kahan L, Nomura M (eds) Ribosomes: structure, function and genetics. University Park Press, Baltimore, p 377–411

    Google Scholar 

  • Weissbach H, Pestka S (1977) Molecular mechanisms of protein biosynthesis. Academic, New York

    Google Scholar 

  • Werner R, Kollack A, Nierhaus D, Schreiner G, Nierhaus KH (1975) Experiments on the binding sites and the action of some antibiotics which inhibit ribosomal functions. In: Drews J, Hahn FE (eds) Topics in infectious diseases, vol 1. Springer, Vienna New York, p 217

    Google Scholar 

  • West IC (1980) Energy coupling in secondary active transport. Biochim Biophys Acta 604: 91–126

    PubMed  CAS  Google Scholar 

  • West RW, Rodriguez RL (1980) Construction and characterization of Escherichia coli promoter-probe plasmid vectors. II. RNA polymerase binding studies on antibiotic-resistance promoters. Gene 9: 175–193

    Google Scholar 

  • White JP, Cantor CR (1971) Role of magnesium in the binding of tetracycline to Escherichia coli ribosomes. J Mol Biol 58: 397–400

    PubMed  CAS  Google Scholar 

  • Wiebauer K, Schraml S, Shales SW, Schmitt R (1981) The tetracycline resistance transposon Tn1721; RecA-dependent gene amplification and expression of tetracycline resistance. J Bacteriol 147: 851–859

    Google Scholar 

  • Williams G, Smith I (1979) Chromosomal mutations causing resistance to tetracycline in Bacillus subtilis. Mol Gen Genet 177: 23–29

    PubMed  CAS  Google Scholar 

  • Wilson CR, Baldwin JN (1978) Characterization and construction of molecular cloning vehicles within Staphylococcus aureus. J Bacteriol 136: 402–413

    PubMed  CAS  Google Scholar 

  • Wojdani A, Avtalion RR, Sompolinsky D (1976) Isolation and characterization of tetracycline resistance proteins from Staphylococcus aureus and Escherichia coli. Antimicrob Agents Chemother 9: 526–534

    PubMed  CAS  Google Scholar 

  • Wray LV, Reznikoff WS (1983) Identification of repressor binding sites controlling expression of tetracycline resistance encoded by Tn10. J Bacteriol 156: 1188–1191

    PubMed  CAS  Google Scholar 

  • Wray LV, Jorgensen RA, Reznikoff WS (1981) Identification of the tetracycline resistance promoter and repressor in transposon Tn10. J Bacteriol 147: 297–304

    PubMed  CAS  Google Scholar 

  • Yagi Y, Clewell DB (1976) Plasmid determined tetracycline resistance in Streptococcus faecalis: randomly repeated resistance determinants in amplified forms of pAMα1 DNA. J Mol Biol 102: 583–600

    PubMed  CAS  Google Scholar 

  • Yagi Y, Clewell DB (1977) Identification and characterization of a small sequence located at two sites on the amplifiable tetracycline resistance plasmid pAMα1 in Streptococcus faecalis. J Bacteriol 129: 400–406

    PubMed  CAS  Google Scholar 

  • Yang HL, Zubay G, Levy SB (1976) Synthesis of an R plasmid protein associated with tetracycline resistance is negatively regulated. Proc Natl Acad Sci USA 73: 1509–1512

    PubMed  CAS  Google Scholar 

  • Young TW, Hubball SJ (1976) R-factor mediated resistance to tetracycline in Escherichia coli K-12. An R factor with a mutation to temperature sensitive tetracycline resistance. Biochem Biophys Res Commun 70: 117–124

    Google Scholar 

  • Zupancic TJ, King SR, Pogue-Geile KL, Jaskunas SR (1980) Identification of a second tetracycline-inducible polypeptide encoded by Tn10. J Bacteriol 144: 346–355

    PubMed  CAS  Google Scholar 

  • Zund P, Lebek G (1980) Generation time-prolonging R plasmids: correlation between increases in the generation time of Escherichia coli caused by R plasmids and their molecular size. Plasmid 3: 65–69

    PubMed  CAS  Google Scholar 

References

  • Braus G, Argast M, Beck CF (1984) Identification of additional genes on transposon Tn10: tetC and tetD. J Bacteriol 160: 504–509

    PubMed  CAS  Google Scholar 

  • Schollmeier K, Hillen W (1984) Transposon Tn10 contains two structural genes with opposite polarity between tetA and IS10R. J Bacteriol 160: 499–503

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chopra, I. (1985). Mode of Action of the Tetracyclines and the Nature of Bacterial Resistance to Them. In: Hlavka, J.J., Boothe, J.H. (eds) The Tetracyclines. Handbook of Experimental Pharmacology, vol 78. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70304-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70304-1_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-70306-5

  • Online ISBN: 978-3-642-70304-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics