Skip to main content

Inferenzmethoden

  • Conference paper
Book cover Künstliche Intelligenz

Part of the book series: Informatik-Fachberichte ((2252,volume 93))

  • 85 Accesses

Kurzfassung

Inferenzbildung wird als eine zentrale Fähigkeit von Systemen angesehen, die intelligentes Verhalten realisieren. Im allgemeinsten Sinne wird darunter die Fähigkeit verstanden, aus vorhandenem Wissen neues Wissen mittels geeigneter Inferenzregeln zu erschließen.

Inferenzbildung tritt in verschiedensten Formen und Kontexten auf, von der strengen mathematischen Beweisführung bis hin zum ungenauen Schließen auf der Grundlage von vagem Wissen im menschlichen Alltag. Die Grenzen zwischen verschieden solcher Formen sind unklar; begriffliche Verwirrung ist die Folge. Der vorliegende Artikel versucht daher, einen klärenden Überblick über das Phänomen des Schließens in seinen verschiedenen Manifestationen unter möglichst einheitlichen Gesichtspunkten zu geben.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literaturverzeichnis

  • Angluin, D., Smith, C. H.: Inductive inference: theory and methods. Computing surveys 15, 237–269 (1984).

    Article  MathSciNet  Google Scholar 

  • Bibel, W.: A uniform approach to programming. Report 7633, FB Mathematik, TUM (1976).

    Google Scholar 

  • Bibel, W.: Automated theorem proving. Vieweg, Braunschweig (1982).

    MATH  Google Scholar 

  • Bibel, W.: Deduktionsverfahren. Proceedings der Frühjahrsschule Künstliche Intelligenz 1982 (W. Bibel et al., eds.), Fachberichte Informatik 59, Springer, Berlin 99–140 (1982a).

    Google Scholar 

  • Bibel, W.: Matings in matrices. C.ACM 26, 844–852 (1983).

    Article  MathSciNet  MATH  Google Scholar 

  • Bibel, W.: Knowledge representation from a deductive point of view. Proceedings of the I IFAC Symposium on Artificial Intelligence, Leningrad, USSR, October 1983 ( G. S. Pospelov, ed. ), Pergamon Press Ltd. (1984).

    Google Scholar 

  • Bibel, W.: First-order reasoning about knowledge and belief. Proceedings of the International Conference on Artificial Intelligence and Robotic Control Systems, Smolenice, CSSR, June 1984 (l. Plan- der, ed.) North-Holland, Amsterdam (1984a).

    Google Scholar 

  • Biermann, A., Guiho, G. und Kodratoff, Y.: Automatic program construction techniques. MacMillan, New York (1984).

    MATH  Google Scholar 

  • Bowen, K. A., Kowalski, R. A.: Amalgamating language and metalanguage in logic programming. Logic Pogramming (K. L. Clark et al., eds.), Academic Press, London, 153–172 (1982).

    Google Scholar 

  • Brown, F. M.: Experimental logic and the automatic analysis of algorithms. TR-83-16, University of Texas at Austin, Dept. of Computer Science (1983).

    Google Scholar 

  • Brown, J. S. und de Kleer, J.: The origin, form, and logic of qualitative physical laws, IJCAI-83 (A. Bundy, ed.), Kaufmann, Los Altos, 1158–1169 (1983).

    Google Scholar 

  • Buchberger, B.: Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem nulldimensionalen Polynomideal. Dissertation, Universität Innsbruck (1965).

    Google Scholar 

  • Bundy, A.: The computer modelling of mathematical reasoning. Academic Press (1983).

    MATH  Google Scholar 

  • Clark, K.: Negation as failure. In: Logic and data bases ( H. Gallaire et al., eds.), Plenum Press, New York (1978).

    Google Scholar 

  • Dietterich, T. G.; London, R.; Clarkson, K. and Droney, R.: Learning and inductive inference. The Handbook of Artificial Intelligence (P. Cohen et al., eds.), Kaufmann, Los Altos, 323–512 (1982).

    Google Scholar 

  • Doyle, J.: A truth maintenance system. Artifical Intelligence. 12, 231–272 (1979).

    Article  MathSciNet  Google Scholar 

  • Duda, R.; Gaschnig, J. und Hart, P. E.: Model design in the PROSPECTOR consultant system for mineral exploration. In: Expert systems in the micro-electronic age (D. Michie, ed.), Edinburgh Univ. Press, 153–167 (1979).

    Google Scholar 

  • Fagin, R.; Halpern, J. Y., Vardi, M. Y., A modeltheoretic analysis of knowledge. IBM Res. Lab., San Jose, CA (May 1984).

    Google Scholar 

  • Farinas del Cerro, L., A simple deduction method for modal logic. Information Processing Letters, 14, 49–51 (1982).

    Article  MathSciNet  MATH  Google Scholar 

  • Fitting, M.: Proof methods for modal and intuitionistic logics. Reidel, Dordrecht (1983).

    MATH  Google Scholar 

  • Habel, C.: Logische Systeme und Repädsentationssysteme. GWAI-83 (B. Neumann, ed.), Springer, Berlin 118–142, (1983).

    Google Scholar 

  • Halpern, J. Y., Moses, Y.: Towards a theory of knowledge and ignorance. IBM RJ, (April 1984).

    Google Scholar 

  • Hughes, G. E., und Cresswell, M. J.: An introduction to modal logic. Methuen, London (1968).

    MATH  Google Scholar 

  • Knuth, D. E., Bendix, P. B.: Simple word problems in universal algebras. Computational problems in abstract algebra (J. Leed, ed.), Pergamon Press, 263-297 (1970).

    Google Scholar 

  • Kowalski, R.: Logic for problem solving. North-Holland, New York (1979).

    MATH  Google Scholar 

  • Kripke, S.: A completeness theorem in modal logic, J. Symb. Logic 24, 1–14 (1959).

    Article  MathSciNet  MATH  Google Scholar 

  • Lemmon, E.: An introduction to modal logic. Americ. Phil. Quaterly Monograph Series (1977).

    MATH  Google Scholar 

  • Lewis, C. I.: A survey of symbolic logic. Univ. of California, Berkeley (1918).

    Google Scholar 

  • Loveland, D. W.: Automated theorem proving. North-Holland, Amsterdam (1978).

    MATH  Google Scholar 

  • McCarthy, J.: Epistemological problems of Artificial Intelligence. IJCAI-77, W. Kaufmann,, Los Altos, 1038–1044 (1977).

    Google Scholar 

  • McCarthy, J.: First-order theories of individual concepts and propositions. In: Expert systems in the micro-electronic age (D. Michie, ed.), Edinburgh Univ. Press, 271–287 (1979).

    Google Scholar 

  • McCarthy, J.: Circumscription - a form of non-monotonic reasoning. Artificial Intelligence 13, 27–39 (1980).

    Article  MathSciNet  MATH  Google Scholar 

  • McCarthy, J.: Applications of circumscription to formalizing common sense knowledge. Stanford University (1984).

    Google Scholar 

  • McDermott, D., Doyle, J.: Non-monotonic logic I. Artificial Intelligence 13, 41–71 (1980).

    Article  MathSciNet  MATH  Google Scholar 

  • McDermott, D.: Non-monotonic Modal theories. JACM 29, 33–57 (1982).

    Article  MathSciNet  MATH  Google Scholar 

  • Meitzer, B.: Briefwechsel mit J. McCarthy und J. Barnden. Unveröffentlicht (1982/83).

    Google Scholar 

  • Michalski, R. S., Carboneil, J. G., und Mitchell, T. M., Machine learning. Tioga, Palo Alto (1983).

    Google Scholar 

  • Minker, J., Perlis, D.: Applications of protected circumscription. 7th Conference on Automated Deduction (R. Shostak, ed.), Springer, Berlin, 414–425 (1984).

    Chapter  Google Scholar 

  • Minker, J., Perlis, D.: Circumscription - Finitary completeness results.Dept. computer Sc., Univ. of Maryland (1984a).

    Google Scholar 

  • Moore, R. C.: Reasoning about knowledge and action. IJCAI-77, Kaufmann, Los Altos, 223–227 (1977).

    Google Scholar 

  • Moore, R. C.: Semantical considerations on non-monotonic logic. IJCAI- 83 (A. Bundy, ed.), Kaufmann, Los Altos, 272–279 (1983).

    Google Scholar 

  • Nilsson, N. J.: Principles of artificial intelligence. Tioga, Palo Alto (1980).

    MATH  Google Scholar 

  • Prade, H.: A synthetic view of approximate reasoning techniques. IJCAI-83 (A. Bundy, ed.), Kaufmann, Los Altos, 130–136 (1983).

    Google Scholar 

  • Quinlan, J. R., Consistency and plausible reasoning. IJCAI-83 (A. Bundy, ed.), W. Kaufmann, Los Altos, 137–144 (1983).

    Google Scholar 

  • Reiter, R.: On closed world data bases. In: Logic and data bases ( H. Gallaire et al., eds.), Plenum Press, New York (1978).

    Google Scholar 

  • Reiter, R.: A logic for default reasoning. Artificial Intelligence 13, 18–132 (1980).

    Article  MathSciNet  Google Scholar 

  • Reiter, R.: Towards a logical reconstruction of relational database theory. In: On conceptual modelling: perspectives from artificial intelligence, databases and programming languages ( M. Brodie et al., eds.), Springer, Berlin (1984).

    Google Scholar 

  • Robinson, J. A.: A machine oriented logic based on the resolution principle. J.ACM 12, 23–41 (1965).

    Article  MATH  Google Scholar 

  • Shapiro, E.: An algorithm that infers theories from facts. IJCAI-81, Kaufmann, Los Altos, 446–451 (1981).

    Google Scholar 

  • Stickel, M. E.: A case study of theorem proving by the Knuth-Bendix method discovering that x3=x implies ring commutativity. 7th International Conference on Automated Deduction (R. Shostak, ed.), Springer, Berlin 248–258 (1984).

    Chapter  Google Scholar 

  • Wahlster, W.: Naturlichsprachliche Argumentation in Dialogsystemen. Springer, Berlin (1981).

    Google Scholar 

  • Weyrauch, R. W: Prolegomena to a theory of mechanized formal reasoning. Artificial Intelligence 13, 133-1970 (1980).

    Article  MathSciNet  Google Scholar 

  • Zadeh, L. A.: A computational approach to fuzzy quantifiers in natural languages. Comp. & Maths, with Appls. 9, Pergamon Press, 149–184 (1983)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bibel, W. (1985). Inferenzmethoden. In: Habel, C. (eds) Künstliche Intelligenz. Informatik-Fachberichte, vol 93. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70283-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70283-9_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-15190-6

  • Online ISBN: 978-3-642-70283-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics