Skip to main content

Interaction of Frog Virus 3 with the Cytoskeleton

  • Chapter
Iridoviridae

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 116))

Abstract

The eukaryotic cell contains a detergent-insoluble structural framework termed the cytoskeleton (Brown etal. 1976; Lenk etal. 1977; Osborn and Weber 1977; Webster et al. 1978). The principal components of the cytoskeleton are three chemically and morphologically distinct filaments: the microtubules, the intermediate filaments, and the microfilaments. The three filaments have been well characterized both morphologically and biochemically. Microtubules are hollow tubes measuring 22–26 nm in diameter and each microtubule contains protofilaments which in turn are composed of heterodimers of tubulin (Olmsted and Borisy 1973). Intermediate filaments are wavy filaments measuring 7–11 nm in diameter (Lazarides 1981). At present, four classes of intermediate filaments have been identified (Lazaredes 1981). They are keratin filaments of epithelial cells, neurofilaments of neurons, glial filaments of cells of glial origin (e.g., astrocytes), and a class of intermediate filaments common to all cell types. Though morphologically similar, each class of intermediate filaments contains distinct proteins. Microfilaments measure 4–8 nm in diameter (Goldman et al. 1975) and contain subunits of actin (Groeschel-Stewart 1980).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Beer M, Zobel RC (1961) Electron stains II electron microscopic studies on the visibility of stained DNA molecules. J Mol Biol 3: 717–726

    Article  PubMed  CAS  Google Scholar 

  • Brinkley BR, Fistel SH, Marcum JM, Pardue RL (1980) Microtubules in cultured cells; indirect immunofluorescent staining with tubulin antibody. Int Rev Cytol 63: 59–96

    Article  PubMed  CAS  Google Scholar 

  • Brown S, Levinson W, Spudich JA (1976) Cytoskeletal elements of chick embryo fibroblasts revealed by detergent extraction. J Supramol Struct 5: 119–130

    Article  PubMed  CAS  Google Scholar 

  • Dales S, Mosbach E (1968) Vaccinia as a model for membrane biogenesis. Virology 35: 546–583

    Article  Google Scholar 

  • Damsky CH, Sheffield JB, Tuszynski GP, Warren L (1977) Is there a role for actin in virus budding? J Cell Biol 75: 593–605

    Article  PubMed  CAS  Google Scholar 

  • Darlington RW, Granoff A, Breeze DC (1966) Viruses and renal carcinoma of Rana pipiens. II. Ultrastructural studies and sequential development of virus isolated from normal and tumor. tussue. Virology 29: 149–156

    Google Scholar 

  • DeBrabander M, Geuens G, Nuydens R, De Mey J (1982) The interaction between microtubules and intermediate filaments in cells treated with taxol and Nocodazole. J Cell Biol 95: 226a

    Google Scholar 

  • Estensen RD, Plagemann PGW (1972) Cytochalasin B: inhibition of glucose and glucosamine transport. Proc Natl Acad Sci USA 69: 1430–1434

    Article  CAS  Google Scholar 

  • Evans RM, Fink LM (1982) An alteration in the phosphorylation of vimentin-type intermediate filaments is associated with mitosis in cultured mammalian cells. Cell 29: 43–52

    Article  PubMed  CAS  Google Scholar 

  • Goldman RD, Knipe DM (1972) Functions of cytoplasmic fibers in non-muscle cells. Cold Spring Harbor Symp Quant Biol 37: 523–534

    Google Scholar 

  • Goldman RD, Lazarides E, Pollack R, Weber K (1975) The distribution of actin in non-muscle cells: The use of actin antibody in the localization of actin within the microfilament bundles of mouse 3T3 cells. Exp Cell Res 90: 333–344

    Article  PubMed  CAS  Google Scholar 

  • Goorha G, Granoff A (1979) Icosahedral cytoplasmic deoxyriboviruses. Comprehensive Virology 14: 347–399

    CAS  Google Scholar 

  • Goorha R, Murti G, Granoff A, Tirey R (1978) Macromolecular synthesis in cells infected by frog virus 3. VIII. The nucleus is a site of frog virus 3 DNA and RNA synthesis. Virology 84: 32–50

    Article  PubMed  CAS  Google Scholar 

  • Graham RC Jr, Karnovsky MJ (1966) The early stages of absorption of injected horseradish peroxi-dase in the proximal tubules of mouse kidney: ultrastructural cytochemistry by a new technique. J Histochem Cytochem 14: 291–302

    Article  PubMed  CAS  Google Scholar 

  • Groeschel-Stewart V (1980) Immuno-cytochemistry of cytoplasmic contractile proteins. Int Rev Cytol 65: 193–254

    Article  CAS  Google Scholar 

  • Hiller G, Weber K, Schneider L, Prajsz C, Jungwirth C (1979) Interactions of assembled progeny poxvirus with the cellular cytoskeleton. Virology 98: 142–153

    Article  PubMed  CAS  Google Scholar 

  • Hiller G, Jungwirth C, Weber K (1981) Fluorescence microscopical analysis of the life cycle of vaccine virus in chick embryo fibroblasts. Exp Cell Res 132: 81–87

    Article  PubMed  CAS  Google Scholar 

  • Hynes RO, Destree AT (1978) 10 nm filaments in normal and transformed cells. Cell 13:151–163

    Google Scholar 

  • Kletzien RF, Perdue JF (1973) The inhibition of sugar transport in chick embryo fibroblasts by cytochalasin B. Evidence for a membrane-specific effect. J Biol Chem 248: 711–719

    Google Scholar 

  • Langsfeld A, Low I, Wieland T, Dancker P, Hasselbach W (1974) Interaction of phalloidin with actin. Proc Natl Acad Sci USA 71: 2803–2807

    Article  Google Scholar 

  • Lazarides E (1980) Intermediate filaments as mechanical integrators of cellular space. Nature 283: 249–256

    Article  PubMed  CAS  Google Scholar 

  • Lazarides E (1982) Intermediate filaments: a chemically heterogeneous, developmentally regulated class of proteins. Ann Rev Biochem 51: 219–254

    Article  PubMed  CAS  Google Scholar 

  • Lenk R, Ransom L, Kaufman Y, Penman S (1977) A cytoskeletal structure with associated polyribosomes obtained from Hela cells. Cell 10: 67–78

    Article  PubMed  CAS  Google Scholar 

  • Lin DC, Tobin KD, Grumet M, Lin S (1980) Cytochalasins inhibit nuclei-induced actin polymerization by blocking filament elongation. J Cell Biol 84: 455–460

    Article  PubMed  CAS  Google Scholar 

  • Luftig RB (1982) Does the cytoskeleton play a significant role in animal virus replication? J Theor Biol 99: 173–191

    Article  PubMed  CAS  Google Scholar 

  • Maes R, Granoff A (1967) Viruses and renal carcinoma of Rana pipiens. IV. Nucleic acid synthesis in frog virus 3 infected BHK 21–13 cells. Virology 33: 491–502

    Article  PubMed  CAS  Google Scholar 

  • Maes R, Granoff A, Smith WR (1967) Viruses and renal carcinoma of Rana pipiens. III. The relationship between input multiplicity of infection and inclusion body formation in frog virus 3 infected cells. Virology 33: 137–144

    Article  PubMed  CAS  Google Scholar 

  • Morris VL, Roizman B (1967) Localization of frog virus multiplications in chick embryo cells by immunofluorescence. Proc Soc Exp Biol Med 124: 507–510

    PubMed  CAS  Google Scholar 

  • Murti KG, Goorha R (1983) Interaction of frog virus 3 with the cytoskeleton. I. Altered organization of microtubules, intermediate filaments, and microfilaments. J Cell Biol 96: 1248–1257

    Google Scholar 

  • Murti KG, Porter KR, Goorha R, Ulrich M, Wray G (1984) Interaction of frog virus 3 with the cytoskeleton. 2. Structure and composition of the virus assembly site. Exp Cell Res 154: 270–282

    Google Scholar 

  • Olmsted JB, Boris GG (1973) Microtubules. Ann Rev Biochem 43: 507–540

    Article  Google Scholar 

  • Osborn M, Weber K (1977) The detergent-resistant cytoskeleton of tissue culture cells includes the nucleus and the microfilament bundles. Exp Cell Res 106: 339–349

    Article  PubMed  CAS  Google Scholar 

  • Pfeiffer G, Willitzki D, Weder D, Becker B, Radsak K (1983) Microtubular reaction in human fibroblasts infected by cytomegalovirus. Arch Virol 76: 153–159

    Article  PubMed  CAS  Google Scholar 

  • Porter KR, Tucker JB (1981) The ground substance of the living cell. Scientific American 244: 56–67

    Article  PubMed  CAS  Google Scholar 

  • Puszkin E, Puszkin S, Lo LW, Tannenbaum SW (1973) binding of cytochalasin D to platelet and muscle myosin. J Biol Chem 248:7754–7761

    Google Scholar 

  • Rutter G, Mannweiler K (1977) Alterations of actin-containing structures in BHK 21 cells infected with Newcastle disease virus and vesicular stomatitis virus. J Gen Virol 37: 232–242

    Article  Google Scholar 

  • Schiff PB, Horwitz SB (1980) Taxol stabilizes microtubules in mouse fibroblast cells. Proc Natl Acad Sci USA 77: 1561–1565

    Article  PubMed  CAS  Google Scholar 

  • Schiff PB, Fant J, Horwitz SB (1979) Promotion of microtubule assembly in vitro by taxol. Nature 277: 665–667

    Article  PubMed  CAS  Google Scholar 

  • Schliwa M, Van Blerkom J (1981) Structural interaction of cytoskeletal components. J Cell Biol 90: 222–235

    Article  PubMed  CAS  Google Scholar 

  • Sharpe AH, Chen LB, Murphy JR, Fields BN (1980) Specific disruption of vimentin filament organization in monkey kidney CV-I cells by diphtheria toxin, exotoxin A, and cycloheximide. Proc Natl Acad Sci USA 77: 7267–7271

    Article  PubMed  CAS  Google Scholar 

  • Silberstein H, August JT (1973) Phosphorylation of animal virus proteins by a virion protein kinase. J Virol 12: 511–522

    PubMed  CAS  Google Scholar 

  • Silberstein H, August JT (1976) Characterization of virion protein kinase as a virus-specified enzyme. J Biol Chem 251: 3185–3190

    PubMed  CAS  Google Scholar 

  • Simons K, Garoff H (1980) The budding mechanisms of enveloped animal viruses. J Gen Virol 50: 1–21

    Article  PubMed  CAS  Google Scholar 

  • Stallcup KC, Raine CS, Fields BN (1983) Cytochalasin B inhibits the maturation of measles virus. Virology 124: 59–74

    Article  PubMed  CAS  Google Scholar 

  • Starger J, Goldman R (1977) Isolation and preliminary characterization of 10 nm filaments from baby hamster kidney (BHK–21) cells. Proc Natl Acad Sci USA 74: 2422–2426

    Article  PubMed  CAS  Google Scholar 

  • Tannenbaum J, Tannenbaum SW, Godman GC (1977) The binding sites of cytochalasin D. II. Their relationship to hexose transport and to cytochalasin B. J Cell Physiol 91: 239–248

    Google Scholar 

  • Verderame M, Alcorta D, Egnor M, Smith K, Pollack R (1980) Cytoskeletal Factin patterns quantitated with fluorescein isothiocyanate-phalloidin in normal and transformed cells. Proc Natl Acad Sci USA 77: 6624–6628

    Article  PubMed  CAS  Google Scholar 

  • Wang E, Choppin P (1981) Effect of vanadate on intracellular distribution and function of lOnm filaments. Proc Natl Acad Sci USA 78: 2363–2367

    Article  PubMed  CAS  Google Scholar 

  • Webster RE, Osborn M, Weber K (1978) Visualization of the same PtK2 cytoskeletons by both immunofluorescence and low power electron microscopy. Exp Cell Res 117: 47–61

    Article  PubMed  CAS  Google Scholar 

  • Willis DB, Goorha R, Granoff A (1979) Macromolecular synthesis in cells infected by frog virus 3. XI. A ts mutant of frog virus 3 that is defective in late transcription. Virology 98: 328–335

    Article  PubMed  CAS  Google Scholar 

  • Wolosewick J J, Porter KR (1976) Stero high voltage electron microscopy of whole cells of the human diploid line, WI 38. Am J Anat 147: 303–324

    Article  PubMed  CAS  Google Scholar 

  • Wolosewick J J, Porter KR (1979) Microtrabecular lattice of the cytoplasmic ground substance: artifact or reality. J Cell Biol 82: 114–139

    Article  PubMed  CAS  Google Scholar 

  • Wulf E, Deboben A, Bantz FA, Faultich H, Wieland T (1979) Fluorescent phallotoxin, a tool for the visualization of cellular actin. Proc Natl Acad Sci USA 76: 4498–4502

    Article  PubMed  CAS  Google Scholar 

  • Zieve GW, Heidemann SR, Mcintosh JR (1980) Isolation and partial characterization of a cage of filaments that surrounds the mammalian mitotic spindle. J Cell Biol 87: 160–169

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Murti, K.G., Goorha, R., Chen, M. (1985). Interaction of Frog Virus 3 with the Cytoskeleton. In: Willis, D.B. (eds) Iridoviridae. Current Topics in Microbiology and Immunology, vol 116. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70280-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70280-8_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-70282-2

  • Online ISBN: 978-3-642-70280-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics