Skip to main content

Macromolecular Synthesis in Cells Infected by Frog Virus 3

  • Chapter
Iridoviridae

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 116))

Abstract

The best studied member of the Iridoviridae is frog virus 3 (FV3), isolated by Granoff et al. (1966) from a renal adenocarcinoma of the leopard frog, Rana pipiens. Similar isolates were made from normal frog kidney and liver (FV1, FY 2, FV5–FY24), but FV3 was chosen for further investigation because of its presence in the tumor. As it turned out, this unusual cytoplasmic DNA virus bore no causal or even helper relationship to the tumor, which was the result of infection with the Lucké herpesvirus (Naegele et al. 1974), but it did have a number of interesting characteristics that made it a worthy object of study in its own right. FV3 is probably similar or identical to other amphibian virus isolates obtained from bullfrogs, newts, and toads (Wolf et al. 1968; Clark et al. 1969).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aubertin AM (1975) Arginine requirement for frog virus 3 development. Virology 63:573–576 Aubertin AM, Longchampt MO (1974) Thymidine kinase induction in FV3–infected mouse cells. Virology 58: 111–118

    Article  Google Scholar 

  • Aubertin AM, Guir J, Kirn A (1970) The inhibition of vaccinia virus DNA synthesis in KB cells infected with FV3. J Gen Virol 8: 105–111

    Article  PubMed  CAS  Google Scholar 

  • Aubertin AM, Palese P, Tan KB, Vilagines R, McAuslan BR (1971) Proteins of a polyhedral cytoplas-mic deoxyvirus. III. Structure of FV3 and location of virus-associated adenosine triphosphate phosphohydrolase. J Virol 8: 643–648

    PubMed  CAS  Google Scholar 

  • Aubertin AM, Hirth C, Travo C, Nonnenmacha H, Kirn A (1973) Preparation and properties of an inhibitory extract from frog virus 3 particles. J Virol 11: 694–701

    PubMed  CAS  Google Scholar 

  • Aubertin AM, Travo C, Kirn A (1976) Proteins solubilized from frog virus 3 particles: effect on transcription. J Virol 18: 34–41

    PubMed  CAS  Google Scholar 

  • Aubertin AM, Anton M, Bingen A, Elharrar M, Kirn A (1977) Solubilized viral proteins produce fatal hepatitis in mice. Nature 265: 456–457

    Article  PubMed  CAS  Google Scholar 

  • Aubertin AM, Tondre L, Martin JP, Kirn A (1980) Structural polypeptides of frog virus 3, phosphory- lated proteins. FEBS Lett 112: 233–237

    Article  PubMed  CAS  Google Scholar 

  • Aubertin AM, Tondre L, Descamps P (1981) Capping of frog virus 3 antigen on the plasma membrane of infected cells. Ann Virol Inst Pasteur 132E: 195–205

    Article  Google Scholar 

  • Aubertin AM, Tondre L, Lopez C, Obert G, Kirn A (1983) Sodium dodecyl sulfate-mediated transfer of electrophorectically separated DNA-binding proteins. Anal Biochem 131: 127–134

    Article  PubMed  CAS  Google Scholar 

  • Barzilai R, Lachmi BE (1973) The effect of frog virus 3 on the biological activity of various RNA viruses. J Gen Virol 21: 201–204

    Article  PubMed  CAS  Google Scholar 

  • Barzilai R, Finkelkraut E, Lazarus LH, Goldblum N (1974) Inhibition of simian virus 40 DNA synthesis by frog virus 3. J Gen Virol 23: 335–338

    Article  PubMed  CAS  Google Scholar 

  • Becker A, Murialdo H (1978) Head morphogenesis of complex double-stranded DNA bacteriophages. Microbiol 42: 529–576

    Google Scholar 

  • Berk AJ, Sharp PA (1977) Sizing and mapping of early adenovirus mRNAs by gel electrophoresis of SI endonuclease digested hybrids. Cell 12: 721–732

    Article  PubMed  CAS  Google Scholar 

  • Braunwald J, Guir J, Obert G (1972) Inhibition de la synthese des proteins cellulaires dans les cellules KB infectees avec le virus 3 de la grenouille (FV3). Ann Inst Pasteur 123: 251–264

    CAS  Google Scholar 

  • Campadelli-Fuime G, Costanzo F, Foa-Tanasi L, LaPlaca M (1975) Modification of cellular RNA polymerase II after infection with frog virus 3. J Gen Virol 27: 341–394

    Google Scholar 

  • Chinchar VG, Granoff A (1984) Isolation and characterization of a frog virus 3 variant resistant to phosphonoacetate: Genetic evidence for a virus-specific DNA polymerase. Virology 138:357–361

    Google Scholar 

  • Chinchar VG, Coorha R, Granoff (1984 a) Early proteins are required for the formation of frog virus 3 assembly sites. Virology 135:148–156

    Google Scholar 

  • Chinchar VG, Metzger D, Granoff A, Goorha R (1984b) Localization of frog virus 3 proteins using monoclonal antibodies. Virology 137: 211–216

    Article  PubMed  CAS  Google Scholar 

  • Clark HF, Gray G, Fabian F, Ziegel RF, Karzon DT (1969) Comparative studies of amphibian cytoplasmic virus strains isolated from the leopard frog, bullfrog, and newt, In: Mizell A (ed) Biology of amphibian tumors. Recent results in cancer research. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Cordier O, Aubertin AM, Lopez C, Tondre L (1981) Inhibition de la Tranduction par le FV3: Action des proteines virales de structure solubilisees sur la synthesis proteique in vivo et in vitro. Ann Virol Inst Pasteur 132E: 25–39

    Google Scholar 

  • Cuillel M, Tripier F, Braunwald J, Jacrot B (1979) A low resolution structure of frog virus 3. Virology 99: 277–285

    Article  PubMed  CAS  Google Scholar 

  • Darai G, Anders K, Koch H, Delius H, Gelderblam H, Samaleios C, Flugel RM (1983) Analysis of the genome of fish lymphocystic disease virus isolated directly from epidermal tumors of pleuronectes. Virology 126: 466–479

    Article  PubMed  CAS  Google Scholar 

  • Delius H, Darai G, Flugel RF (1984) DNA analysis of the insect iridescent virus type 6: evidence for circular permutation and terminal redundancy. J Virol 49: 609–614

    PubMed  CAS  Google Scholar 

  • Doerfler W (1983) DNA methylation and gene activity. Ann Rev Biochem 52: 93–124

    Article  PubMed  CAS  Google Scholar 

  • Drillien R, Spehner D, Kirn A (1977) Cell killing by FV3: Evidence for cell killing by single viral particles or single viral subunits. Biochem Biophys Res Commun 79: 105–111

    Google Scholar 

  • Drillien R, Spehner D, Kirn A (1980) Inactivation of the toxicity of frog virus 3 proteins by UV irradiation. FEMS Lett 7:87–90 Eisen

    Google Scholar 

  • H, Pereira, Da Silva LH, Jacob F (1968) The regulation and mechanism of DNA synthesis in bacteriophage lambda. Cold Spring Harbor Symp Quant Biol 33: 755–764

    Google Scholar 

  • Elharrar M, Kirn A (1977) Effect of frog virus 3 infection on protein synthesis activity of mouse liver ribosomes. FEMS Lett 1: 13–16

    Article  CAS  Google Scholar 

  • Elharrar M, Hirth C, Blanc J, Kirn A (1973) Pathogenic de l’hepatite toxique de la souris provoquee par le FV 3 (frog virus 3): Inhibition de la synthese des macromolecules du foie. Biochem Biophys Acta 319: 91–102

    Google Scholar 

  • Elliott RM, Kelly DC (1980) Frog virus 3 replication: Induction and intracellular distribution of polypeptides in infected cells. J Virol 33: 28–51

    Google Scholar 

  • Elliott RM, Bravo R, Kelly DC ( 1980 a) Frog virus 3 replication: Analysis of structural and nonstructural polypeptides in infected BHK cells by acidic and basic two-dimensional gel electrophoresis. J Virol 33: 18–27

    Google Scholar 

  • Elliott RM, Bateson A, Kelly DC (1980b) Phosphonacetic acid inhibition of frog virus 3 replication. J Virol 33: 539–542

    PubMed  CAS  Google Scholar 

  • Fenner F, Woodroofe GM (1960) The reactivation of poxviruses II. The range of reactivating viruses. Virology 11: 185–201

    Google Scholar 

  • Gendrault JL, Steffan OM, Binger A, Kirn A (1981) Penetration and uncoating of frog virus 3

    Google Scholar 

  • FV3) in cultured rat Kupffer cells. Virology 112:375–384

    Google Scholar 

  • Gilbert W, Dressier D (1968) DNA replication: The rolling circle model. Cold Spring Harbor Symp Quant Biol 33: 473–484

    Google Scholar 

  • Goorha R (1981 a) Frog virus 3 requires RNA polymerase II for its replication. J Virol 37:496–499

    Google Scholar 

  • Goorha R (1981b) DNA-binding proteins in frog virus 3-infected cells. J Gen Virol 56: 131–140

    Article  PubMed  CAS  Google Scholar 

  • Goorha R (1982) Frog virus 3 DNA replication occurs in two stages. J Virol 43: 519–528

    PubMed  CAS  Google Scholar 

  • Goorha R, Granoff A (1974) Macromolecular synthesis in cells infected by frog virus 3. I. Virus-specific protein synthesis and its regulation. Virology 60: 237–250

    Google Scholar 

  • Goorha R, Granoff A (1979) Icosahedral cytoplasmic deoxyriboviruses. In: Fraenkel-Conrat H, Wagner RR (eds) Comprehensive virology, vol 14. Plenum, New York, pp 347–399

    Google Scholar 

  • Goorha R, Murti KG (1982) The genome of frog virus 3, an animal DNA virus, is circularly permuted and terminally redundant. Proc Natl Acad Sci USA 79: 248–252

    Article  PubMed  CAS  Google Scholar 

  • Goorha R, Dixit P (1984) A temperature-sensitive (ts) mutant of frog virus 3 (FV3) is defective in second-stage DNA replication. Virology 136: 186–195

    Article  PubMed  CAS  Google Scholar 

  • Goorha R, Murti G, Granoff A, Tirey R (1978) Macromolecular synthesis in cells infected by frog virus 3. VIII. The nucleus is a site of frog virus 3 DNA and RNA synthesis. Virology 84: 32–50

    Article  PubMed  CAS  Google Scholar 

  • Goorha R, Willis DB, Granoff A (1979) Macromolecular synthesis in cells infected by frog virus 3. XII. Viral regulating proteins in transcriptional and post–transcriptional controls. J Virol 32: 442–448

    Google Scholar 

  • Goorha R, Willis DB, Granoff A, Naegele RF (1981) Characterization of a temperature-sensitive mutant of frog virus 3 defective in DNA replication. Virology 112: 40–48

    Article  PubMed  CAS  Google Scholar 

  • Goorha R, Granoff A, Willis D, Murti KG (1984) The role of DNA methylation in virus replication: Inhibition of frog virus 3 replication by 5-azacytidine. Virology 138: 94–102

    Article  PubMed  CAS  Google Scholar 

  • Granoff A (1969) Viruses of amphibia. Curr Top Microbiol Immunol 50: 107–137

    PubMed  CAS  Google Scholar 

  • Granoff A, Came PE, Breeze DC (1966) Viruses and renal carcinoma of Rana pipiens. I. The isolation and properties of virus from normal and tumor tissue. Virology 29: 133–148

    Google Scholar 

  • Gravell M, Granoff A (1970) Viruses and renal adenocarcinoma of Rana pipiens. IX. The influence of temperature and host cell on replication of frog polyhedral cytoplasmic deoxyribovirus ( PCDV ). Virology 41: 596–602

    Google Scholar 

  • Gravell M, Naegele RF (1970) Nongenetic reactivation of frog polyhedral cytoplasmic deoxyribovirus ( PCDV ). Virology 40: 170–174

    Google Scholar 

  • Gravell M, Cromeans T (1971) Mechanisms involved in the nongenetic reactivation of frog polyhedral cytoplasmic deoxyribovirus: Evidence for RNA polymerase in the virion. Virology 46: 39–49

    Google Scholar 

  • Guir M, Braunwald J, Kirn A (1970) Inhibition de la synthese du DNA et des RNA cellulaires dans les cellules KB infectee avec le virus 3 de la grenouille (FV3). CR Hebd Acad Sci Paris 270: 2605–2608

    CAS  Google Scholar 

  • Houts GE, Gravell M, Darlington RW (1970) Base composition and molecular weight of DNA from a frog polyhedral cytoplasmic deoxyribovirus. Proc Soc Exp Biol Med 135: 232–236

    PubMed  CAS  Google Scholar 

  • Houts GE, Gravell M, Darlington (1974) Electron microscopic observation of early events of frog virus 3 replication. Virology 58: 587–594

    Google Scholar 

  • Kang HS, McAuslan BR (1972) Virus-associated nucleases: Location and properties of deoxyribo-nucleases and ribonucleases in purified frog virus 3. J Virol 10: 202–210

    PubMed  CAS  Google Scholar 

  • Kelly DC (1973) Icosahedral cytoplasmic deoxyriboviruses. J Gen Virol 20: 17–41

    Article  PubMed  Google Scholar 

  • Kelly DC, Avery RJ (1974) Frog virus 3 deoxyribonucleic acid. J Gen Virol 24: 339–348

    Article  PubMed  CAS  Google Scholar 

  • Kirn A, Steffan AM, Gut JP (1974) L’hepatite degenerative aigue de la souris, provoquee par le FV3. Nouve Presse Med 3: 145–149

    CAS  Google Scholar 

  • Kucera L (1970) Effects of temperature on frog polyhedral cytoplasmic deoxyribovirus multiplication: Thermosensitivity of initiation, replication, encapsidation of viral DNA. Virology 42: 576–581

    Article  PubMed  CAS  Google Scholar 

  • Kucera LS, Granoff A (1969) Induction and regulation of DNA nucleotidyl-transferase activity in fish cells infected with frog virus 3. Virology 37: 455–463

    Article  PubMed  CAS  Google Scholar 

  • Lee MH, Willis DB (1983) Restriction endonuclease mapping of the frog virus 3 genome. Virology 126: 317–327

    Article  PubMed  CAS  Google Scholar 

  • Luder A, Mosig G (1982) Alternate mechanism for initiation of DNA replication forks in bacterio-phage T4-priming by RNA polymerase and by recombination. Proc Natl Acad Sci USA 79: 1101–1105

    Article  PubMed  CAS  Google Scholar 

  • Maes R, Granoff A (1967a) Viruses and renal carcinoma of Rana pipiens. III. The relationship between input multiplicity of infection and inclusion body formation in frog virus 3-infected cells. Virology 33: 137–144

    Article  PubMed  CAS  Google Scholar 

  • Maes R, Granoff A (1967 b) Viruses and renal carcinoma of Rana pipiens. IV. Nucleic acid synthesis in frog virus 3-infected BHK 21/13 cells. Virology 33:491–502

    Google Scholar 

  • Martin JP, Aubertin AM, Lecerf F, Kirn A (1981) Intracellular distribution and phosphorylation of virus-induced polypeptides in frog virus 3-infected cells. Virology 110: 349–365

    Article  PubMed  CAS  Google Scholar 

  • Martin JP, Aubertin AM, Kirn A (1982) Expression of frog virus 3 early genes after ultraviolet irradiation. Virology 122: 402–410

    Article  PubMed  CAS  Google Scholar 

  • Martin JP, Aubertin AM, Londre L, Kirn A (1984) Fate of frog virus 3 DNA replicated in the nucleus of arginine-deprived CHO cells. J Gen Virol 65: 721–732

    Article  PubMed  CAS  Google Scholar 

  • McAuslan BR, Smith W (1968) DNA synthesis in frog virus 3-infected mammalian cells. J Virol 2: 1006–1015

    PubMed  CAS  Google Scholar 

  • McAuslan BR, Kucera L (1969) DNA polymerase activity in FV 3-infected BHK cells. Virology 35: 328–330

    Article  Google Scholar 

  • McAuslan BR, Armentrout RW (1974) The biochemistry of icosahedral cytoplasmic eoxyviruses. Curr Top Microbiol Immunol 68: 77–105

    PubMed  CAS  Google Scholar 

  • Miller RC (1975) Replication and molecular recombination of T4 phage. Ann Rev Microbiol 29: 355–376

    Article  Google Scholar 

  • Murti KG, Goorha R, Granoff A (1982) Structure of frog virus 3: Genome size and arrangement of nucleotide sequences as determined by electron microscopy. Virology 116: 275–283

    Google Scholar 

  • Naegele RF, Granoff A, Darlington RW (1974) The presence of the Lucke herpesvirus genome in induced tadpole tumors and its oncogenicity: Koch-Henle postulates fulfilled. Proc Nat Acad Sci US 71: 830–834

    Google Scholar 

  • Nishioka Y, Silverstein S (1977) Degradation of cellular mRNA during infection by herpes simplex virus. Proc Natl Acad Sci USA 74: 2370–2374

    Article  PubMed  CAS  Google Scholar 

  • Purifoy D, Naegele RF, Granoff A (1973) Viruses and renal carcinoma of Rana pipiens. XIV. Temperature-sensitive mutants of frog virus 3 with defective encapsidation. Virology 54: 525–535

    Article  PubMed  CAS  Google Scholar 

  • Rabussay D, Geidusch EP (1977) Regulation of gene action in the development of lytic bacteriophages. In: Fraenkel-Conrat H, Wagner RR (eds) Comprehensive virology. Plenum, New York, pp 1–196

    Google Scholar 

  • Raghow R, Granoff A (1979) Macromolecular synthesis in cells infected by frog virus 3. X. Inhibition of cellular protein synthesis by heat-inactivated virus. Virology 98: 319–327

    Google Scholar 

  • Raghow R, Granoff A (1980) Macromolecular synthesis in cells infected by frog virus 3. XIV. Characterization of the methylated nucleotide sequences in viral messenger RNAs. Virology 107: 283–294

    Google Scholar 

  • Raghow R, Granoff A (1983) Cell-free translation of frog virus 3 messenger RNAs: Initiation factors from infected cells discriminate between early and late viral mRNAs. J Biol Chem 258: 511–578

    Google Scholar 

  • Raghow R, Willis DB, Granoff A (1980) Macromolecular synthesis in cells infected by frog virus 3. XIII. Cell-free translation of immediate early viral mRNAs. Virology 100: 495–497

    Google Scholar 

  • Razin A, Riggs W (1980) DNA methylation and gene function. Science 210: 604–610

    Article  PubMed  CAS  Google Scholar 

  • Robach Y, Michels B, Cerf R, Braunwald J, Darcy-Tripier F (1983) Ultrasonic absorption evidence for structural fluctuations in frog virus 3 and its subparticles. Proc Natl Acad Sci USA 80: 3981–3985

    Article  PubMed  CAS  Google Scholar 

  • Schibler U, Kelley DE, Perry RP (1977) Comparison of methylated sequences in messenger RNA and heterogeneous nuclear RNA from mouse L cells. J Mol Biol 115: 695–714

    Article  PubMed  CAS  Google Scholar 

  • Silberstein H, August JT (1973) Phosphorylation of animal virus proteins by a virion protein kinase. J Virol 12: 511–522

    PubMed  CAS  Google Scholar 

  • Silberstein H, August JT (1976 a) Purification and properties of a virion protein kinase. J Biol Chem 251:3176–3184

    Google Scholar 

  • Silberstein H, August JT (1976 b) Characterization of a virion protein kinase as a virus-specified enzyme. J Biol Chem 251:3185–3190

    Google Scholar 

  • Skalka AM (1977) DNA replication-bacteriophage lambda. Curr Top Microbiol Immunol 78: 201–237

    Article  PubMed  CAS  Google Scholar 

  • Smith WR, McAuslan BR (1969) Biophysical properties of frog virus 3 and its DNA: Fate of radioactive virus in early stages of infection. J Virol 4: 332–347

    Google Scholar 

  • Streisinger G, Emrich J, Stahl MM (1967) Chromosome structure in phage T4. III. Terminal redundancy and length determination. Proc Natl Acad Sci USA 57: 292–295

    Google Scholar 

  • Tannenbaum J, Goorha R, Granoff A (1978) Inhibition of vesicular stomatitis virus replication by frog virus 3. Selective action on secondary transcription. Virology 89: 560–569

    Google Scholar 

  • Tannenbaum J, Goorha RG, Granoff A (1979) The inhibition of vesicular stomatitis virus protein synthesis by frog virus 3. Virol 95: 227–231

    Article  CAS  Google Scholar 

  • Tripier-Darcy F, Braunwald J, Kirn A (1982) Localization of some frog virus 3 structural proteins. Virology 116: 635–640

    Article  PubMed  CAS  Google Scholar 

  • Tweedell K, Granoff A (1968) Viruses and renal carcinoma of Rana pipiens V. Effect of frog virus 3 on developing frog embryos and larvae. J Nat Cancer Inst 40: 407–410

    PubMed  CAS  Google Scholar 

  • Vilagines R, McAuslan BR (1971) Proteins of polyhedral cytoplasmic deoxyribovirus. II. Nucleotide phosphohydrolase activity associated with frog virus 3. J Virol 7: 619–624

    PubMed  CAS  Google Scholar 

  • Watson JD (1971) Origin of concatemeric T7 DNA. Nature 239: 197–201

    Google Scholar 

  • Webster RG, Goorha R, Granoff A (1974) Replication of influenza virus in chick embryo fibroblasts after inhibition of host cell macromolecular synthesis by frog virus 3. Virology 58: 600–604

    Article  PubMed  CAS  Google Scholar 

  • Willis D, Granoff A (1974) Lipid composition of frog virus 3. Virology 61: 256–269

    Article  PubMed  CAS  Google Scholar 

  • Willis D, Granoff A ( 1976 a) Macromolecular synthesis in cells infected by frog virus 3. IV. Regulation of virus-specific RNA synthesis. Virology 70: 397–410

    Google Scholar 

  • Willis D, Granoff A (1976b) Macromolecular synthesis in cells infected by frog virus 3. V. The absence of polyadenylic acid in the majority of virus-specific RNA species. Virology 73: 543–547

    Google Scholar 

  • Willis D, Granoff A (1978) Macromolecular synthesis in cells infected by frog virus 3. IX. Two temporal classes of early viral RNA. Virology 86: 443–453

    Google Scholar 

  • Willis D, Granoff A (1980) Frog virus 3 DNA is heavily methylated at CpG sequences. Virology 107: 250–257

    Article  PubMed  CAS  Google Scholar 

  • Willis DB, Goorha R, Miles M, Granoff A (1977) Macromolecular synthesis in cells infected by frog virus 3. VII. Transcriptional and post-transcriptional regulation of virus gene expression. J Virol 24: 326–342

    Google Scholar 

  • Willis DB, Goorha R, Granoff A (1979 a) Macromolecular synthesis in cells infected by frog virus 3 XI. A ts mutant of frog virus 3 that is defective in late transcription. Virology 98:328–335

    Google Scholar 

  • Willis DB, Goorha R, Granoff A (1979b) Nongenetic reactivation of frog virus 3 DNA. Virology 98: 476–479

    Article  PubMed  CAS  Google Scholar 

  • Willis DB, Goorha R, Granoff A (1984a) DNA methyltransferase induced by frog virus 3. J Virol 49: 86–91

    PubMed  CAS  Google Scholar 

  • Willis DB, Foglesong D, Granoff A (1984b) Nucleotide sequence of an immediate-early frog virus 3 gene. J Virol 53: 905–912

    Google Scholar 

  • Wolf K, Bullock GL, Dunbar CE, Quimby MC (1968) Tadpole edema virus: a viscerotrophic pathogen for anuran amphibians. J Infect Dis 118: 253–262

    Article  PubMed  CAS  Google Scholar 

  • Zylber-Katz E, Weisman P (1975) Effects on host cell polyribosomes following infection with frog virus 3 at a non-permissive temperature. Arch Virol 47: 181–185

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Willis, D.B., Goorha, R., Chinchar, V.G. (1985). Macromolecular Synthesis in Cells Infected by Frog Virus 3. In: Willis, D.B. (eds) Iridoviridae. Current Topics in Microbiology and Immunology, vol 116. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70280-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70280-8_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-70282-2

  • Online ISBN: 978-3-642-70280-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics