Skip to main content

Therapeutics and Control

  • Chapter
Boophilus microplus

Abstract

The most efficient method to obtain control over Boophilus microplus consists in preventing the parasitic forms on the host from reaching the stage of engorged female, thus avoiding their dropping to the ground, oviposition and the consequent hatching of larvae that produce renewed infestations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allan J (1955) Loss of biological efficiency of cattle dipping. Nature (London) 175:1131–1133

    Article  CAS  Google Scholar 

  • Allan K, Palmer W (1976) The ixodicidal efficiency of a number of pour-on formulations of Amitraz against the Biarra strain of the southern cattle Boophilus microplus on housed calves. Proc Int Conf Tick Borne Dis Vectors, Edinburgh, 27 Sep-1 Oct 1976, pp 241–18

    Google Scholar 

  • Allock ER, Woods DR, Rivet DEA (1978) Bacterial degradation products of the ixodicide Amitraz. J Appl Bacteriol 44:383–386

    Article  Google Scholar 

  • Amaral NK, Monmany LFS, Carvalho LAF (1974) Acaricide A.C. 84633: First trials for control of Boophilus microplus. J Econ Entomol 67 (3):387–389

    PubMed  CAS  Google Scholar 

  • Angel ECA (1975) Efficacy of Abequito* Nimidane and Cygon* dimethoate against ticks. American Cyanamid Co. International Agric Res and Dev Rep Jan-February:1–4

    Google Scholar 

  • Armstrong G, Bradbury FR, Standen H (1951) The penetration of the insect cuticle by isomers of benzene hexachloride. Ann Appl Biol 38:555–556

    Article  CAS  Google Scholar 

  • Atkinsons PW, Knowles CO (1974) Induction of hyperactivity in larvae of the cattle tick Boophilus microplus by formamidines and related compounds. Pestic Biochem Physiol 4:417–424

    Article  Google Scholar 

  • Ault CN (1946) Control of Boophilus australis in the Argentine by the gamma isomer of Hexachloro cyclohexane (Gammexane). Nature (London) 157:699–700

    Article  CAS  Google Scholar 

  • Ault CN (1948) Investigaciones sobre las dificultades de combatir la garrapata Boophilus microplus. Rev Med Vet 30:1–52

    Google Scholar 

  • Ault CN (1950) El empleo del canfeno clorado (Toxafeno) contra la garrapata Boophilus microplus Can. Gac Vet XII Buenos Aires 67:208–213

    Google Scholar 

  • Australia Res (1919) The cattle tick pest. Inst Sci Ind Bull 13:15 —19

    Google Scholar 

  • Azis SA, Knowles CO (1973) Inhibition of Monoamine oxidase by the pesticide chlordimeform and related compounds. Nature (London) 242:417–418

    Article  Google Scholar 

  • Baker JAF, Thompson GE (1966) Supona (chlorfenvimphos) for cattle tick control. Part I. Hand spraying trials. J S Afr Vet Med Assoc 3:367–372

    Google Scholar 

  • Baker JAF, Shaw RD, Thompson GE, Thoburn JA (1962) Development of a composite dioxathion/chlofenvinphos concentrate for control of single and multi-host ticks and their resistant strains in Southern Africa. Soc Chem Ind Monogr 33:172 —181

    Google Scholar 

  • Baker JAF, Taylor RJ, Stanford GD (1973) A new triazapenta diene compound active against cattle ticks of mayor importance in South Africa. Proc 7th Br Insectic Fungicide. Conf, pp 291— 300

    Google Scholar 

  • Baker PB, Woods DR (1977) Cometabolism of the ixodicidal amitraz. J Appl Bacteriol 42:187–196

    Article  PubMed  CAS  Google Scholar 

  • Barnett SF (1961) The control of ticks on livestock. FAO Agric Stud 54:1–113

    Google Scholar 

  • Barlow F, Elliot M, Farnham AW, Hadaway AB, Janes NJ, Needham PH, Wickham JC (1971) Insecticidal activity of the pyrethrins and related compounds. IV Essential features for insecticidal activity in chrysanthemates and related cyclopropane esters. Pestic Sci 2:115 —118

    Article  CAS  Google Scholar 

  • Bekker PM (1960) History of cattle dipping. Veld (Spring Issue) part 1:1–3, part 2:11–14, part 3:9 —13, part 4:3–6

    Google Scholar 

  • Betancourt AE, Parra D, Angel CA (1978) Evaluación de la efectividad del acaricida Nimidane en el control de Boophilus microplus. Rev ICA Bogota Colombia 2:357–361

    Google Scholar 

  • Blackman GG, Hodson MJ (1977) Further evaluation of permethrin fly control. Pestic Sci 8:270–273

    Article  CAS  Google Scholar 

  • Blakeslee EB, Bruce WG (1948) DDT to control cattle tick. J Econ Entomol 41:104–105

    CAS  Google Scholar 

  • Blin RC, Gunther FA (1955) Determination of residues of 0,0-diethyl-0-(2-isopropyl-6‑methyl-4-pyrimidil) phosphorothidate in milk. J Agric Food Chem 3:1013 —1016

    Article  Google Scholar 

  • Boero JJ (1969) Terapéutica antiparasitaria. Ed Univ Buenos Aires, pp 69–87

    Google Scholar 

  • Bridi AA, Bonetti AL, de Souza LAM, Uribe LF (1976 —1977)) Control of sheep scab outbreak suppusedey resistant to organochlorines and organophosphorus compounds using Amitraz 12.5 o E.E. Arq Fac Vet UFRGS/Porto Alegre 4–5:135 —145

    Google Scholar 

  • Brigs GG, Elliot M, Farnham AW, Janes NF (1974) Structural aspects of the knockdown of pyrethoids. Pestic Sci 5:643–649

    Article  Google Scholar 

  • Brooks FA (1947) Agricultural engineering. Am Soc Agric Eng St Joseph Mich 28:233–237

    Google Scholar 

  • Brown AWA (1951) Insect control by chemicals. Wiley, New York, pp 45–67

    Google Scholar 

  • Brundrett HM, Richards R, Smith CL (1955) Test of toxaphene, chlordane and strabane against lone star tick of cattle. J Econ Entomol 48:233–234

    Google Scholar 

  • Bulman GM, Aguilar M, Diaz CR, Brunel CM, Cicuta ME, Etchechoury MM (1980) Evaluación de la acción garrapaticida de un nuevo piretroide sintético fotoestable en un rodeo de zona infestada de Boophilus microplus Can,en el area subtropical de la República Argentina. Gac Vet Buenos Aires 42:338–351

    Google Scholar 

  • Bulman GM, Schmied LM, Aloisi GE, Diaz CR, Brunel CM, Cicuta ME, Etchechoury MM (1981) Resultados de la acción garrapaticida del closantel en solución al 5% inyectable ante la garrapata comiin del vacuno Boophilus microplus (Can) en bovinos de la zona subtropical argentina, conforme a dos esquemas distintos de tratamientos. Gac Vet Buenos Aires 43:359

    Google Scholar 

  • Cerineo JM, Bocalandro AG, Pizarro IC (1963) Nuestros puntos de vista a las consideraciones formuladas a un trabajo sobre los “Garrapaticidas Organofosforados”. Gac Vet Buenos Aires 160:466–477

    Google Scholar 

  • Claborn HV (1956) Malathion in milk and fat from sprayed cattle. J Agric Food Chem 4:941— 942

    Article  CAS  Google Scholar 

  • Clark AG, Hitchcock M, Smith JN (1956) Metabolism of gammaxane in flies, ticks and locusts. Nature (London) 1:103 —104

    Google Scholar 

  • Coollier BL, Dieter CE (1965) Dursban, a new insecticide for chinch bug and sod web-worm control in St. Augustine Grass. Down Earth 21 (3):3–9

    Google Scholar 

  • Cooper FA (1962) Delnav (2:3-p-Dioxane-S-bis-(0,0, diethyl dithiophosphate) as an ixodicide. Vet Rec 4:103 —113

    Google Scholar 

  • Csiro (1967) New acaricides control in the Biarra cattle tick. Rural Res CSIRO 60 Sept 1–5

    Google Scholar 

  • Danilo Parra G (1969) Efecto comparativo del Dursban y del Asuntol. Rev Inst Colomb Agropecu 2:73–80

    Google Scholar 

  • Davie MS, Chadwick PR, Hoborn JM, Stewart DC, Wickham JC (1970) Effectiveness of the (+)-trans-chrysanthemic acid ester of ( + )-allethrolone (bioallethrin) against four insect species. Pestic Sci 1:225–227

    Article  Google Scholar 

  • Downing V, Harbour HE, Stones LC (1952) Modern insecticides and ectoparasite control. Vet Rec 64:781–804

    Google Scholar 

  • Dresden O, Krijgsman BJ (1948) Experiments on the physiological action of contact insecticides. Bull Entomol Res 38:575–578

    Article  PubMed  CAS  Google Scholar 

  • Drummond RO (1958) Laboratory screening test of animals systemic insecticides. J Econ Entomol 51 (4):425–427

    CAS  Google Scholar 

  • Drummond RO (1966) Further evaluation of animal systemic insecticides. Entomol Res Agric Res Sery USDA. Kerrvice Tex 1:7 —12

    Google Scholar 

  • Drummond RO, Moore B, Warren J (1959) Test with insecticides for the control of the winter tick. J Econ Entomol 52 (6):1220–1221

    CAS  Google Scholar 

  • Drummond RO, Moore B, Wrich JJ (1960) Field tests with insecticides for control of lone star ticks in cattle. J Econ Entomol 53 (5):953–955

    Google Scholar 

  • Drummond RO, Graham OH, Meleney WP, Diamant G (1964) Field test in Mexico with new insecticide and arsenic for the control of Boophilus ticks on cattle. J Econ Entomol 57 (3):340–346

    CAS  Google Scholar 

  • Drummond RO, Whetstone TM, Ernst SE (1966) Control of ticks on cattle with toxa‑ phene applied by power sprayer and spray race. J Econ Entomol 59 (2):471–482

    Google Scholar 

  • Drummond RO, Ernst SE, Trevino JL, Graham OH (1967) Insecticides for control of the cattle tick and the southern cattle tick on cattle. J Econ Entomol 61 (2):467–469

    Google Scholar 

  • Drummond RO, Ernst SE, Trevino JL, Graham OH (1968) Insecticides for control of the cattle tick and the southern cattle tick on cattle. J Econ Entomol 61:934–936

    Google Scholar 

  • Drummond RO, Miller JA, Whetstone TM (1981) Control of ticks systematically with Merck MK-933, and avermectin. J Econ Entomol 74:432–436

    PubMed  CAS  Google Scholar 

  • Dutoit R, Graf H, Bekker PM (1941) Resistance to arsenical as displayed by the single host blue tick, Boophilus decoloratus (Koch) in a localized area of the Union of South Africa. J S Afr Vet Med Assoc 12 (2):50–81

    CAS  Google Scholar 

  • Elliot M, Farnham AW, Janes NF, Needham PH, Pulman DA, Stevenson JH (1973a)

    Google Scholar 

  • NRDC 143, a more stable pyrethroid. Proc 7th Br Insectic Fungic Conf 7:7211— 7228

    Google Scholar 

  • Elliot M, Farmham AW, Janes NF, Needham PH, Pearson BC (1967) 5-Benzyl-3–3-furyl‑methyl chrysanthemate: a new potent insecticide. Nature (London) 213:493–494

    Article  Google Scholar 

  • Elliot M, Farnham AW, Janes NF, Needham PH, Pulman DA, Stenvenson JH (1973b) A photostable pyrethroid. Nature (London) 246:169 —170

    Article  Google Scholar 

  • Elliot M, Janes NF, Potter C (1978) The future of pyrethroids in insect control. Annu Rev Entomol 23:443–469

    Article  CAS  Google Scholar 

  • Enders E, Stendel W, Wollweber H (1973) New compounds active against resistant cattle ticks (Boophilus spp.): Relationship between structure and activity within the group of cyclic amidines. Pestic Sci 4:823–838

    Article  CAS  Google Scholar 

  • Fiedler OGH, Veldman FJ (1957) Asuntol, a new insecticidal compound capable of controlling all South Africa cattle ticks. J S Afr Vet Med Assoc 28 (3):249–253

    Google Scholar 

  • Fiedler OGH, Vuuren PJJ (1966) Bromophos-ethyl, a new compound for the control of ticks on livestock. J S Afr Vet Med Assoc 37 (4):432–438

    Google Scholar 

  • Fink DE (1927) Is glutathione the arsenical receptor in insects? Biochem J 15:296–305

    Google Scholar 

  • Fluck V, Rufenacht K (1969) Effectiveness of newer phosphorous compounds against re‑ sistant ticks Boophilus microplus. Vet Pestic Soc Chem Ind Monogr 33:183 —196

    Google Scholar 

  • Garcia Mata E (1947) Empleo del DDT en la lucha contra la garrapata común del ganado bovino (B. microplus (Can)). Minist Agric Gan Nacl Dir Gen Ganadería. Dir San Anim Bs As

    Google Scholar 

  • Geigy JR, Geigy SA (1962–1963) Diazinon contra los ectoparâsitos de los animales domésticos. Inf Dep Prop Antiparasit, Basilea, Suiza, pp 1–10

    Google Scholar 

  • Gothe R, Hartig M (1976) On the ixodicidal activity of cenpyrin, chlordimeform and chlormethiuron against OP-resistant Boophilus microplus strains. Zur ixodiziden Wirksamkeit von Clenpyrin, Chlordimeform and Chlormethiuron gegen P.E. resistente Boophilus microplus-Stämme. Zentralbl Vet Med B23:243–254

    Google Scholar 

  • Graham OH, Drummond RO (1964) Laboratory screening of Insecticides of the prevention of reproduction of Boophilus ticks. J Econ Entomol 57 (3):335–339

    CAS  Google Scholar 

  • Graham OH, Drummond RO, Diamant G (1964) The reproductive capacity of female Boophilus annulatus. Collected from cattle dipped in arsenic of coumaphos. J Econ Entomol 57 (3):409–410

    Google Scholar 

  • Grannet P, Shea WO (1955) Laboratory tests of diazinon-butoxy polypropylene glycol residues. J Econ Entomol 48:487–488

    Google Scholar 

  • Grillo Torrado JM, Gutierrez RO (1977) Susceptibilidad de la metaninfa de la garrapata Boophilus microplus can. Lah. frente a los acaricidas organofosforados. Med Vet Rev Med Vet 52 (2):1–10

    Google Scholar 

  • Grillo Torrado JM, Perez Arrieta A (1973) Acción in vitro de los garrapaticidas organofosforados sobre la evolución de los huevos de la garrapata Boophilus microplus can. Lah Rev Invest Agrop INTA 6:211–221

    Google Scholar 

  • Grillo Torrado JM, Gutierrez RO, Perez Arrieta A (1971) Comparación de la actividad in vitro e in vivo de los garrapaticidas organofosforados. Rev Invest Agropecu Ser 4 (Pathol Anim) 8:no 3, 59–70

    Google Scholar 

  • Guyton AC (1963) Tratado de fisiologia médica. Ed Interam Ed 2:218–219

    Google Scholar 

  • Hammant CA (1977) The introduction of dioxathion for cattle tick control in the tribal trust lands of Rhodesia. Rhod Vet J 8:67–70

    Google Scholar 

  • Harrison IR (1969) The testing of compounds against the cattle tick Boophilus microplus with particular reference to the development of 2-cyclohexylphenyl-N-methylcarbamate. Proc 2nd Int Congr Acarol, (Sutton Bonington) 509–514

    Google Scholar 

  • Harrison IR, Palmer BH, Wilhshurst EC (1973a) Chemical control of cattle ticks. Resistance problems. Pestic Sci 4:531— 542

    Article  CAS  Google Scholar 

  • Harrison IR, Kozlik A, McCarthy JF (1973b) 1,5-Di(2,4-dimethyl-phenyl)-3-methyl-1,3,5triazapenta-1,4-diene, a new acaricide active against strains of mites resistant to organo-phosphorus and bridged diphenyl compounds. Pestic Sci 3:679–680

    Article  Google Scholar 

  • Hitchcock LF, Mackerras IM (1947) The use of DDT in dips to control cattle tick in Queensland. J Cun Sci Ind Res Aust 20:43–45

    CAS  Google Scholar 

  • Hitchcock LF, Roulston WJ (1955) Arsenic -esistance in a strain of cattle tick (Boophilus microplus can.) from northern New South Wales. Aust J Agric Res 6:666–670

    Article  CAS  Google Scholar 

  • Inoue Y, Ohno S, Mizuno T, Yura Y, Murayama K (1976) Insecticidal activities of synthetic pyrethroids. In: Synthetic pyrethroids. Robert F Gould (ed) Elliot M

    Google Scholar 

  • Jara de la F (1971) Algunas notas sobre garrapatas del ganado en Mexico (con claves para identificación de géneros y especies) y su combate con Supona. Cienc Vet XVI 2:131–153

    Google Scholar 

  • Jolly DW, Ratcliffe BD (1958) A field method for measuring blood cholinesterase of animals. Vet Rec 3:29–31

    Google Scholar 

  • Jung HF (1959) A new phosphoric ester residual insecticide with a low order of toxicity. Bull WHO 21 (2):215–221

    PubMed  CAS  Google Scholar 

  • Kato T, Veda K, Fujimoto K (1964) New insecticidally active chrysanthemates. Agric Biol Chem 28:914–915

    Article  Google Scholar 

  • Kenaga EE, Whitney WK, Hardly JL, Doty AE (1965) Laboratory tests with dursban insecticide. J Econ Entomol 58 (6):1043 —1050

    CAS  Google Scholar 

  • Kirkwood S, Phillips PI (1946) Effect of BHC isomers on yeast growth. J Biol Chem 163:251–254

    PubMed  CAS  Google Scholar 

  • Kirshnan KS, Raghavan NG, Mammen ML (1957) Comparative field trials on the residual effectiveness of DDT, malathion and diazinon. Indian J Malariol 12:43–48

    Google Scholar 

  • Knowles CO, Roulston WJ (1972) Antagonism of chlorphenamidine in larvae of the cattle tick Boophilus microplus by formamidines and related compounds. J Aust Entomol 11:349–350

    Article  CAS  Google Scholar 

  • Knowles CO, Wilson JT, Schnitzerling E (1973) Biossay of chlorphenamidine using larvae of the cattle tick Boophilus microplus. Aust Vet J 49:205–206

    Article  PubMed  CAS  Google Scholar 

  • Larkin PJ (1961) Control of the blue tick (Boophilus decoloratus) on cattle with pyrethrum sprays. Vet Rec 73:298–300

    Google Scholar 

  • Leahey JP (1979) The metabolism and environmental degradation of the pyrethroid insecticides. Outlook Agric 10:135 —142

    CAS  Google Scholar 

  • Legg J (1953) A further note on the control of the cattle tick Boophilus microplus by use of synthetic insecticides. Aust Vet J 29:200–201

    Article  Google Scholar 

  • Legg J (1956) A test of two organic phosphorus compounds, diazinon and malathion, in the control of cattle tick in Queensland. Aust Vet J 3:55–60

    Article  Google Scholar 

  • Lepesme P (1937) Comptes rendus hebdomaires des séances. CR Acad Sci 204:717–728

    CAS  Google Scholar 

  • Lombardero OJ, Lucian CA (1980) Efecto del closantel inyectable 5% sobre la oviposición y la eclosión de huevos de Boophilus microplus en bovinos naturalmente infesta-dos. 3rd Congr Argent Cienc Vet, Simp sobre closantel

    Google Scholar 

  • Lombardero OJ, Moriena RA, Racciopi O (1984) Evaluación de la ivermectina como garrapaticida en bovinos a campo de la Provincia de Corrientes. Rev Med Vet Buenos Aires 1:46–50

    Google Scholar 

  • Loomis EC, Nooderhaven D, Roulston WJ (1972) Control of the southern cattle tick by pour-on animal systemic insecticides. J Econ Entomol 65 (6):1638 —1641

    PubMed  CAS  Google Scholar 

  • Ludwig PD, McNeill JC (1966) Results of laboratory and field tests with dursban insecticide for mosquito control. Mosq News 26 (3):344–351

    CAS  Google Scholar 

  • March RB (1956) Fat of P-32-labelled malathion sprayed on Jersey heifer calves. J Econ Entomol 49:679–682

    CAS  Google Scholar 

  • Martin SIS (1975) A laboratory technique for the evaluation of compounds applied to cattle for the control of the stable fly, Stomoxys calcitrans. Proc 8th Br Insectic Fungic Conf, pp 539–545

    Google Scholar 

  • Matter JJ, Schmidt CD, Blumer R (1976) Compounds screened as animal protectant sprays at Kerrville Texas. New Orleans, LA USA, ARS-S 125:1–65

    Google Scholar 

  • McCullough RN, Nolan J (1974) Studies of Acaricides at the cattle tick research station Wollongbar 1963 to 1970. Sci Bull 85:12–15

    Google Scholar 

  • Metcalf RL (1955) Organic insecticides, their chemistry and mode of action. Wiley Inter-science, New York, chap. 11, pp 251— 315

    Google Scholar 

  • Metcalf RL, Kearns CW (1945) Drug antagonism of DDT: Periplaneta blatta. Natl Res Counc, Ins Control Comm, Rep CC 1:109 —118

    Google Scholar 

  • Ministerio de Agricultura de la Nacion Argentina (1941) Dir Ganaderia Ley 12.566, Bol no 8 April

    Google Scholar 

  • Ministerio de Ganaderia y Agricultura (1941) Dir Ganaderia Ley 9.965, Erradicación de la Garrapata. Montevideo Cartilla 1:43–44

    Google Scholar 

  • Munoz-Cobeíias ME, Moltedo HL, Moiso AM (1978) Sarna psoróptica en ovinos, tratamiento de campo empleando Amitraz. Gac Vet Buenos Aires 40:191–196

    Google Scholar 

  • Munson SC, Yeager IF (1947) Promortem survival times with cyanides. Ann Entomol Soc Am 40:475–488

    CAS  Google Scholar 

  • Negherbon WO (1959) Handb Toxicol Nat Acad Sci Nat Res Counc, vol III. Insecticides. Saunders, Philadelphia London, pp 25–40

    Google Scholar 

  • Newton LG (1967) Acaricide resistance and cattle tick control. Aust Vet J 43:1–7

    Article  Google Scholar 

  • Nolan J (1979) New acaricides to control-resistant ticks. Recent Adv Acarol 11 (2):55–64

    Google Scholar 

  • Nolan J, Roulston WI, Wharton RH (1977) Resistance to synthetic pyrethroids in a DDTresistant strain of Boophilus microplus. Pestic Sci 8:1–3

    Article  Google Scholar 

  • Nolan J, Roulston WJ, Schnitzerling HJ (1979) The potential of some synthetic pyrethroids for control of cattle tick (Boophilus microplus). Aust Vet J 55:463–466

    Article  PubMed  CAS  Google Scholar 

  • Nolan J, Bird P, Schnitzerling HJ (1981) Evaluation of the potential of systemic slow release chemical treatments for control of the cattle tick (Boophilus microplus) using ivermectin. Aust Vet J 57:493–497

    Article  PubMed  CAS  Google Scholar 

  • Norris KR (1956) Commonw Sci Indust Res Org. Research on cattle tick. Aust Vet J 32:177–182

    Article  Google Scholar 

  • Norris KR, Roulston WJ, Snowball GJ (1950) Observations on the control of the cattle tick preparations of DDT and benzene hexachloride (BHC) in dips. Aust J Agric Res 1:165 —177

    Article  CAS  Google Scholar 

  • Nunez JL (1977) The history of sheep scab in Argentina. Proc Br Crop Protect Conf Brighton, UK, pp 409–413

    Google Scholar 

  • Nunez JL, Pugliese ME, Shaw RD (1972) Boophilus microplus Can. pruebas de susceptibilidad in vitro con veinte cepas argentinas. Rev Med Vet 52 (1):37–43

    Google Scholar 

  • Nunez JL, Pugliese ME, Bachmann H (1975) Prueba en gran escala empleando un garrapaticida en base a ethion. Gac Vet Buenos Aires 298:183 —187

    Google Scholar 

  • O’Brien RD (1960) Toxic phosphorus esters, chemistry metabolism and biological effects, vol I. Academic Press, London New York, 19–27

    Google Scholar 

  • Pacheco Torres MF (1968) Lucha contra ectoparasitos que afectan la ganaderia en Venezuela. Comportamiento de los insecticidas utilizados. Rev Vet Venez 21:202–223

    Google Scholar 

  • Palmer WA (1976a) Acaricidal biossay for cattle tick (Boophilus microplus). NSW Dep Agric Tech Bull 12:1–12

    Google Scholar 

  • Palmer WA (1976b) Management of ethion chlordimeform mixtures in dipping baths. NSW Dep Agric Tech Bull 9:1–11

    Google Scholar 

  • Palmer WA, McCarthy JF, Kozlik A (1971) A new chemical group of cattle acaricides. Proc 3rd Int Congr Acarol 2:687–691

    Google Scholar 

  • Pascoe R, Bentley PD, Cheetham R, Hugg RK, Sayle JD (1980) Fluorinated analogues of chrysanthemic acid. Pestic Sci 11:156 —164

    Article  Google Scholar 

  • Pasquier R (1947) Symptoms of BHC poisoning: Schistocerca. Bull Semestr. Natl AntiAcaricidien Algeria 4:5–22

    Google Scholar 

  • Pizarro IC, de Cerineo JM, Bocalandro AG, Grimaux CA (1963) Los garrapaticidas fosforados, investigación de su actividad frente al Boophilus microplus. Rev Med Vet Buenos Aires 44 (1):13–23

    Google Scholar 

  • Potter C (1935) An account of the constitution and use of an atomized white oil-pyrethrum fluid-to control Plodia interpunctella HB and Ephestesis elvtella HB in warehouses. Ann Appl Biol 4:765–805

    Google Scholar 

  • Purchase HS (1955) Some thoughts on ticks and their practical control. Bull Epizoot Dis Afr 3:226–230

    Google Scholar 

  • Radeleff RO (1958) The toxicity of insecticides and herbicides to livestock. Adv Vet Sci 4:265–271

    CAS  Google Scholar 

  • Reeves GI (1925) Toxicity of arsenical compounds in cattle, sheep and horses. J Econ Entomol 18:82–87

    Google Scholar 

  • Richards AG, Cutkomp LK (1945) Cholinesterase of nerve: Apis and Periplaneta. J Cell Comp Physiol 26:57–61

    Article  CAS  Google Scholar 

  • Richards AG, Cutkomp LK (1946) Chitinous cuticles and DDT. Biol Bull 90:97 —108

    Article  PubMed  CAS  Google Scholar 

  • Roe RT (1969) The toxicity to cattle of some acaricides in use in plunge dips in New South Wales. Aust Vet J 45:332–337

    Article  PubMed  CAS  Google Scholar 

  • Roeder KO, Weiant EA (1948) DDT, sensory nerves and campaniform sensilla: Periplaneta. J Cell Comp Physiol 32:175–186

    Article  CAS  Google Scholar 

  • Roncalli RA (1980) Evaluación clinica de las avermectinas, una nueva clase de agentes antiparasitarios de amplio espectro. Mem 3rd Congr Argent Cienc Vet, Buenos Aires, Argentina, pp 182–189

    Google Scholar 

  • Roulston WJ (1956) The effects of some chlorinated hydrocarbons as systemic acaricides against the cattle tick Boophilus microplus Can. Aust J Agrric Res 7:608–624

    Article  CAS  Google Scholar 

  • Roulston WJ, Wharton RH (1967) Acaricide tests on the Biarra strains of organophosphorus-resistant cattle tick Boophilus microplus from Southern Queensland. Aust Vet J 43:129–134

    Article  PubMed  CAS  Google Scholar 

  • Roulston WJ, Wilson JT (1965) Chemical control of the cattle tick Boophilus microplus Can. Bull Entomol Res 55 (4):617–635

    Article  CAS  Google Scholar 

  • Roulston WJ, Schuntner CA, Schnitzerling HJ (1965) Metabolism of coumaphos in larvae of the cattle tick Boophilus microplus. Aust J Biol Sci 19:619–633

    Google Scholar 

  • Roulston WJ, Schnitzerling HJ, Schuntner CA (1968a) Acetylcholinesterase insensibility in the Biarra strain of the cattle tick Boophilus microplus as a cause of resistance to organophosphorus and carbamate acaricides. Aust Biol Sci 21:759–767

    CAS  Google Scholar 

  • Roulston WJ, Stone FG, Wilson JT, White LI (1968b) Chemical control of an organo-phosphorus and carbamate resistant strain of Boophilus microplus Can. from Queensland. Bull Entomol Res 58:379–392

    Article  CAS  Google Scholar 

  • Roulston WJ, Wharton RH, Schnitzerling HJ, Schustherst RW, Sullivan NO (1971) Mixtures of chlorphenamidine with other acaricides for the control of organophosphorusresistant strains of cattle tick Boophilus microplus. Aust Vet J 477:522–528

    Google Scholar 

  • Said MS, Atef M, Elrefai AH, Michael S, Elsadr H (1971) Experiments on Asuntol and Bercotox for tick control. J Egypt Vet Med Assoc 31:43–54

    Google Scholar 

  • Schechter MS, Green S, La Farge FB (1949) Constituents of pyrethrum flowers. XXIII Cinerolone and the synthesis of related cyclopentenolones. J Am Chem Soc 71:3165–3173

    Article  CAS  Google Scholar 

  • Schmidt CD, Matter JJ, Meurer JH, Reeves RE, Shelley BK (1976) Evaluation of a synthetic pyrethroid for control of stable flies and horn flies on cattle. J Econ Entomol 69:484–486

    PubMed  CAS  Google Scholar 

  • Schuntner CA, Thompson PG (1978) Metabolism of C14 Amitraz in larvae of Boophilus microplus. Aust J Biol Sci 31:141–148

    PubMed  CAS  Google Scholar 

  • Schuntner CA, Thompson PG (1979) Toxicology and metabolism of chlormethiuron in Boophilus microplus larvae. Pestic Sci 10:519–526

    Article  CAS  Google Scholar 

  • Schuntner CA, Schnitzerling HJ, Roulston WJ (1972) Carbaryl metabolism in larvae of organophosphorus and carbamate susceptible and resistant strains of cattle tick Boophilus microplus. Pestic Biochem Physiol 1:424–433

    Article  Google Scholar 

  • Schuntner CA, Roulston WJ, Wharton RH (1974) Toxicity of piperonyl butoxide to Boophilus microplus. Nature (London) 249:386–387

    Article  CAS  Google Scholar 

  • Sergent E, Donatien A, Parrot L (1945) DDT for brown dog tick. Arch Inst Pasteur Alger 23:249–259

    PubMed  CAS  Google Scholar 

  • Shaw RD (1965) Culture of an organophosphorus resistant strain of Boophilus microplus Can. and an assessment of its resistance spectrum. Bull Entomol Res 56:389–405

    Article  Google Scholar 

  • Shaw RD, Baker JAF (1966) The in vitro activity of Supona against ticks. Vet Rec 25:867–870

    Google Scholar 

  • Shaw RD, Cook M, Carson RE (1968) Developments in the resistance status of the southern cattle tick to organophosphorus and carbamate insecticides. J Econ Entomol 61:1590–1593

    PubMed  CAS  Google Scholar 

  • Sherman M (1948) Effects of gamma and other isomers of BHC. J Econ Entomol 41:575–583

    CAS  Google Scholar 

  • Simms BT (1946) Control of cattle tick and lice. Rep Chief, Bur Anim Indust USA (1945 —1946):50–60

    Google Scholar 

  • Slade RE (1945) The gamma isomers of hexachforocyclohexane (Gamexane) an insecticide with outstanding properties. Chem Indust 40:314–319

    Google Scholar 

  • Smallman BN, Fisher RW (1958) Effect of anticholinesterase on acetylcholine levels in insects. Can J Biochem Physiol 36:575–586

    Article  PubMed  CAS  Google Scholar 

  • Smallman BN, Schuntner CA (1972) Authentication of the colinergic system in the cattle tick Boophilus microplus. Insect Biochem 2:67–77

    Article  CAS  Google Scholar 

  • Stendel W, Andrews P (1973) The development of a new compound active against resistant ticks. Proc 7th Br Insectic Fungic Conf, pp 281— 289

    Google Scholar 

  • Stone BF (1968) Brain cholinesterase activity and its inheritance in cattle tick Boophilus microplus strains resistant and susceptible to organophosphorus acaricides. Aust J Biol Sci 21:321–330

    PubMed  CAS  Google Scholar 

  • Stone BF, Knowles CO (1973) A laboratory evaluation of chemicals causing the detachment of the cattle tick Boophilus microplus. J Aust Entomol Soc 12:165–172

    Article  Google Scholar 

  • Stone BF, Meyers RAJ (1957) Dieldrin-resistant cattle ticks Boophilus microplus Can. In Queensland. Aust J Agric Res 8:312–317

    Google Scholar 

  • Stone BF, Webber LG (1960) Cattle ticks, Boophilus microplus,resistant to DDT, BHC, dieldrin. Aust J Agric Res 11 (1):105–119

    Article  CAS  Google Scholar 

  • Stubbs VK, Wilshire C, Webber LG (1982) Cyhalothrin. A novel acaricide and insecticidal synthetic pyrethroid for the control of the cattle tick (Boophilus microplus) and the Buffalo fly (Haematobia irritans exigua). Aust Vet J 59:152–155

    Article  PubMed  CAS  Google Scholar 

  • Suarez MF, Serrano MA (1963) Consideraciones a un trabajo técnico sobre garrapaticidas organofosforados. Gac Vet Buenos Aires 156:293–298

    Google Scholar 

  • Thorburn JA (1947) The control of ectoparasitic infestation of farm stock with “Gammexane”. With special reference to the arsenic-resistant blue tick. Emp J Exp Agric XV 57:43–50

    Google Scholar 

  • Thorburn JA (1968) Control of cattle ticks with Supona. Rhodesia Agric J 65 (5): 107–111

    Google Scholar 

  • Tobias JM, Kollros JJ, Savit J (1946) Contacts vs. internal action of DDT. J Pharmacol Exp Ther 86:287–293

    PubMed  CAS  Google Scholar 

  • Ulmann E (1972) Lindane monograph of an insecticide. Shilinger, Freiburg im Breisgau, pp 17–25

    Google Scholar 

  • Uribe LF, de Souza LAM, Rae DG (1976) Activity of a new ixodicide Triatix against the cattle tick Boophilus microplus under normal field conditions. Argent Fac Vet UFRGS Porto Alegre 4–5:122–134

    Google Scholar 

  • Vickery DS, Arthur BW (1960) Animal systemic activity, metabolism and stability of CRal (Bayer 21/199). J Econ Entomol 53 (6):1037–1047

    CAS  Google Scholar 

  • Voegtglin C, Dyer HA, Leonardo CS (1923) On the mechanism of the action of arsenic upon protoplasm. US Publ Health Rep 38:1882–1912

    Article  Google Scholar 

  • von Orelly IC, Boray IC, Immler R, Knuse F, Wettstein K (1978) The effect of dipofene on resistance ticks. Acta Congr Mundial Vet, Salónica, Grecia

    Google Scholar 

  • Wade LL (1968) The efficacy and stability of Dursban insecticide in dipping vat for control of the southern cattle tick. J Econ Entomol 61 (4):908–909

    PubMed  CAS  Google Scholar 

  • Weighton DM, Kerry JC, McCarthy JF (1973) Amitraz, a novel acaricide with selective insecticidal properties. Proc 7th Br Insectic Fungic Conf, pp 703–711

    Google Scholar 

  • Welch P, Vincent ST (1975) Ac. 84, 633 (Nimidane)• Control of Biarras strain of the cattle tick Boophilus microplus on cattle by dipping in Australia. American Cyanamid Co. Int Agric Res Dev Rep 31:374–379

    Google Scholar 

  • Welsh JH, Gordon HT (1947) DDT on nerve axon of Roach and Cryfish. J Cell Comp Physiol 30:147–171

    Article  CAS  Google Scholar 

  • West TF, Campbell GA (1946) Acaricide resistance and cattle tick control. Aust Vet J 43:394–398

    Google Scholar 

  • Wharton RH, Roulston WJ (1970) Resistance to ticks to chemicals. Annu Rev Entomol 15:381–404

    Article  PubMed  CAS  Google Scholar 

  • Wharton RH, Roulston WJ (1977) Acaricide resistance in Boophilus microplus in Australia. Workshop on hemoparasites (anaplasmosis and babesiosis Colombia I:73–92)

    Google Scholar 

  • Wharton RH, Roulston WJ, Utech KBW, Kear JD (1970) Assessment of the efficiency of acaricides and their mode of applications against the cattle tick Boophilus microplus. Aust J Agric Res 21:985–1006

    Article  CAS  Google Scholar 

  • Whitnall ABM, Bradford B (1947) An arsenic-resistant tick and its control with gammexane dips. Bull Entomol Res 43:353–372

    Article  Google Scholar 

  • Whitney WK, Harrison RP, Howe RG (1967) Cockroach control with dursban insecticide. Pestic Control 35:25–30

    CAS  Google Scholar 

  • Wilson RG (1978) Biochemical mechanisms causing tick resistance. J S Afr Vet Assoc 49 (1):49–51

    PubMed  CAS  Google Scholar 

  • Wood JC (1967) Developments in control of ectoparasites of livestock. Chem Indust:1731–1736

    Google Scholar 

  • Woodward GT (1957) The treatment of organic insecticide poisoning with atropine sulphate and 2 PAM. Vet Med 52:571–578

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nuñez, J.L., Muñoz-Cobeñas, M.E., Moltedo, H.L. (1985). Therapeutics and Control. In: Boophilus microplus. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70256-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70256-3_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-70258-7

  • Online ISBN: 978-3-642-70256-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics