Skip to main content

Mechanismus der Photosynthese

  • Chapter
Physiologie der Photosynthese

Part of the book series: Hochschultext ((HST))

  • 214 Accesses

Zusammenfassung

Ohne Licht kann eine Pflanze keine Photosynthese betreiben. Die Pflanze nimmt Lichtenergie auf, indem die Chlorophylle und Carotinoide Licht absorbieren. Diese absorbierte Energie wird in den Antennen („Lichtsammeifallen“) weitergeleitet und letztlich auf die Reaktionszentren übertragen, die dann einen Elektronentransport in Gang setzen. Beim Elektronentransport der Photosynthese wird aus Wasser Sauerstoff freigesetzt und das Reduktionsäquivalent NADPH/H+ gebildet. Gleichzeitig werden Energieäquivalente (ATP) Liber die Photophosphorylierung synthetisiert. Die Prozesse der Lichtabsorption, der Energieübertragung in den Antennen, des Elektronentransportes und der Photophosphorylierung faßt man als Primärprozesse der Photosynthese oder unter dem Namen Lichtreaktion zusammen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

Literatur zu 5.1

  • Blinks LR (1964) Accessory pigments and photosynthesis. In: Giese AC Photophysiology. Academic Press, New York (General principles, Action of light on plants, Vol 1 ) pp 199–221

    Google Scholar 

  • Butler WL, Hopkins DW (1970) Higher derivative analysis of complex absorption spectra. Photochem Photobiol 12: 439–456

    Article  Google Scholar 

  • Clayton RC (1975) Photobiologie. Verlag Chemie, Weinheim ( Physikali-sche Grundlagen, Band 1 )

    Google Scholar 

  • French CS, Brown JS, Lawrence MC (1972) Four universal forms of Chlorophyll a. Plant Physiol 49: 421–429

    Article  PubMed  CAS  Google Scholar 

  • Horler DNH, Barber J (1981) Principles of remote sensing of plants. In: Smith H (ed) Plants and the daylight spectrum. Academic Press, New York, pp 43–63

    Google Scholar 

Literatur zu 5.2

  • Buschmann C, Prehn H, Lichtenthaler HK (1984) Photoacoustic spectroscopy ( PAS) and its application in photosynthesis research. Photosynthesis Research 5: 29–46

    Google Scholar 

  • Krause GH, Weis E (1984) Chlorophyll fluorescence as a tool in plant physiology. II. Interpretation of fluorescence signals. Photosynthesis Research 5: 139–157

    Google Scholar 

  • Lavorel J, Etienne AL (1977) In vivo chlorophyll fluorescence. In: Barber J fed) Primary processes of photosynthesis. Elsevier, Amsterdam, pp 203–268

    Google Scholar 

  • Maikin S (1977) Delayed luminescence. In: Barber J (ed) Primary processes in photosynthesis. Elsevier, Amsterdam, pp 349–431

    Google Scholar 

Literatur zu 5.3

  • Bennett J (1984) Chloroplast protein phosphorylation and the regulation of photosynthesis. Physiologia plantarum 60: 583–590

    Article  CAS  Google Scholar 

  • Butler WL (1978) Energy distribution in the photochemical apparatus of photosynthesis. Ann Rev Plant Physiol 29: 345–378

    Article  CAS  Google Scholar 

  • Dörr F, Kuhn H (1982) Energieübertragungsmechanismen. In: Hoppe W, Lohmann W, Markl H, Ziegler H (eds) Biophysik. Springer, Berlin, pp 275–299.

    Google Scholar 

Literatur zu 5.4

  • Barber J (1983) Photosynthetic electron transport in relation to thylakoid membrane composition and organization. Plant Cell and Environment 6: 311–322

    Article  CAS  Google Scholar 

  • Bendall DS (1982) Photosynthetic cytochromes of oxygenic organisms. Biochim Biophys Acta 683: 119–151

    CAS  Google Scholar 

  • Cogdell (1983) Photosynthetic reaction centers. Ann Rev Plant Physiol 34: 21–45

    Article  CAS  Google Scholar 

  • Cox RP, Olsen LF (1982) The organization of the electron transport chain in the thylakoid membrane. In: Barber J (ed) Electron transport and photophosphorylation. Elsevier, Amsterdam, pp 49–79

    Google Scholar 

  • Crofts AR, Wraight (1983) The electrochemical domain of photosynthesis. Biochim Biophys Acta 726: 149–185

    CAS  Google Scholar 

  • Golbeck JH, Lien S, San Pietro A (1977) Electron transport in chloroplasts. In: Trebst A, Avron M (eds) Encyclopedia of plant physiology. Springer, Berlin (Photosynthesis I, Photosynthetic electron transport and photophosphorylation, Vol 5 ) pp 94–116

    Google Scholar 

  • Haehnel W (1984) Photosynthetic electron transport in higher plants. Ann Rev Plant Physiol 35: 659–693

    Article  CAS  Google Scholar 

  • Maikin R (1982) Redox properties and functional aspects of electron carriers in chloroplast photosynthesis. In: Barber J (ed) Electron transport and photophosphorylation. Elsevier, Amsterdam pp 1–47

    Google Scholar 

  • Sane PV (1977) The topography of the thylakoid membrane. In: Trebst A, Avron M (eds) Encyclopedia of plant physiology. Springer, Berlin (Photosysnthesis I, Photosynthetic electron transport and photophosphorylation, Vol 5 ) pp 522–542

    Google Scholar 

Literatur zu 5.5

  • Junge W, Rumberg B, Schröder H (1970) The necessity of an electric potential difference and its use for photophosphorylation in short flash groups. European J Biochem 14: 575–581

    Article  CAS  Google Scholar 

  • Mitchell P (1977) Vectorial chemiosmotic processes. Ann Rev Biochem 46: 996–1005

    Article  PubMed  CAS  Google Scholar 

  • Oesterhelt D, Stoeckenius W (1973) Functions of a new photoreceptor membrane. Proc Nat Acad Sei USA 70: 2853–2857

    Article  CAS  Google Scholar 

  • Ostroy SE (1977) Rhodopsin and the visual process. Biochim Biophys Acta 463: 91–125

    PubMed  CAS  Google Scholar 

  • Reeves SG, Hall DO (1978) Photophosphorylation in chloroplasts, Biochim Biophys Acta 463: 275–297

    PubMed  CAS  Google Scholar 

  • Schlodder E, Gräber P, Witt HT (1982) Mechanism of phosphorylation in chloroplasts. In: Barber J (ed) Topics in photosynthesis, Elsevier, Amsterdam (Electron transport and photophosphorylation, Vol 4 ) pp 105–175

    Google Scholar 

  • Stoeckenius W, Lozier RH, Bogomolni RA (1979) Bacteriorhodopsin and the purple membrane of Halobacteria. Biochim Biophys Acta 505: 215–278

    PubMed  CAS  Google Scholar 

  • Strotmann H (1983) Steuerung der Energiekonservierung in der Photosynthese. Ber Deutsch Bot Ges 96: 379–389

    CAS  Google Scholar 

  • Strotmann H, Bickel-Sandkötter S (1984) Structure, function and regulation of chloroplast ATPase. Ann Rev Plant Physiol 35: 97–120

    Article  CAS  Google Scholar 

  • Trebst A, Avron M (1977) Encyclopedia of plant physiology. Springer, Berlin (Photosynthesis I, Photosynthetic electron transport and photophosphorylation, Vol 5 )

    Google Scholar 

  • Wagner G (1979) Halobakterien: Vordringen in biotische Grenzbereiche. Biologie in unserer Zeit 9: 171–179

    Article  CAS  Google Scholar 

  • Witt HT (1979) Energy conservation in the functional membrane of photosynthesis. Analysis by light pulse and electric puis methods. The central role of the electric field. Biochim Biophys Acta 505: 355–427

    PubMed  CAS  Google Scholar 

Literatur zu E 11

  • Clayton RK (1975) Photobiologie. Verlag Chemie, Weinheim ( Physikalische Grundlagen, Band 1 )

    Google Scholar 

  • Williams BD, Wilson K (1978) Praktische Biochemie. Thieme, Stuttgart

    Google Scholar 

Literatur zu E13

  • Schreiber U (1983) Chlorophyll fluorescence yield changes as a tool in plant physiology. I. The measuring system. Photosynthesis Research 4: 361–373.

    CAS  Google Scholar 

Literatur zu E 14

  • Delieu T, Walker DA (1981) Polarographic measurement of photosynthetic oxygen evolution by leaf discs. New Phytol 89: 165–178

    Article  CAS  Google Scholar 

  • Fork DC (1972) Oxygen electrode. In: San Pietro A (ed) Methods in enzymology. Academic Press, New York (Photosynthesis and nitrogen fixation, part B, Vol 24 ) pp 113–122

    Google Scholar 

Literatur zu E 15

  • Izawa S (1980) Acceptors and donors for chloroplast electron transport. In: San Pietro A (ed) Methods in enzymology. Academic Press, New York (Photosynthesis and nitrogen fixation, part C, Vol 69 ) pp 413–434

    Google Scholar 

  • Mc Carty RE (1980) Delineation of the mechanism of ATP synthesis in chloroplasts: use of uncouplers, energy transfer inhibitors and modifiers of coupling factor 1. In: San Pietro A (ed) Methods in enzymology. Academic Press, New York (Photosynthesis and nitrogen fixation, part C, Vol 69 ) pp 719–728

    Google Scholar 

Literatur zu E 16

  • Klingenberg M (1970) Nicotinamid-adenin-dinucleotid. In: Bergmeyer HU (ed) Methoden der enzymatisehen Analyse. Verlag Chemie, Weinheim, pp 2045–2074

    Google Scholar 

Literatur zu E 17

  • Jawoek D, Möllering H, Bergmeyer HU (1970) Adenosin-5′-triphosphat - Bestimmung mit 3-Phosphoglycerat-Kinase. In: Bergmeyer HU (ed) Methoden der enzymatisehen Analyse. Verlag Chemie, Weinheim, pp 2020–2024

    Google Scholar 

  • Strehler BL (1970) Adenosin-5′-triphosphat und Creatinphosphat. In: Bergmeyer HU (ed) Methoden der enzymatisehen Analyse. Verlag Chemie, Weinheim, pp 2036–2050

    Google Scholar 

Literatur zu E 18

  • Böhme H (1980) Der photosynthetische Elektronentransport und die Photophosphorylierung. Praxis der Naturwissenschaften - Biologie 29: 296–302

    Google Scholar 

Literatur zu 5.6

  • Bassham JA (1979) The reductive pentose phosphate cycle and its regulation. In: Gibbs M, Latzko E (eds) Encyclopedia of plant physiology. Springer, Berlin (Photosynthesis II, photosynthetic carbon metabolism and related processes, Vol 6 ) pp 9–30

    Google Scholar 

  • Buchanan B (1980) Role of light in the regulation of chloroplast enzymes. Ann Rev Plant Physiol 31: 341–374

    Article  CAS  Google Scholar 

  • Edwards G, Walker D (1983) C3, C4: Mechanisms and cellular and environmental regulation of photosynthesis. Blackwell Scientific Publ, Oxford

    Google Scholar 

  • Latzko E, Kelly GJ (1979) Enzymes of the reductive pentose phosphate cycle. In: Gibbs M, Latzko E (eds) Encyclopedia of plant physiology. Springer, Berlin (Photosynthesis II, Photosynthetic carbon metabolism and related processes, Vol 6 ) pp 239–250

    Google Scholar 

  • van Schaftingen E, Hers HG (1981) Inhibition of fructose-1,6-bisphosphatase by fructose-2,6-bisphosphate. Proc Nat Acad Sei USA 78: 2861–2863

    Article  Google Scholar 

Literatur zu 5.7

  • Edwards GE, Huber SC (1981) The C4 pathway. In: Hatch MD, Boardman NK (eds) The biochemistry of plants. Academic Press, New York (Photosynthesis, Vol 8 ) pp 237–281

    Google Scholar 

  • Edwards GE, Walker D (1983) C3, C4: Mechanisms and cellular and environmental regulation of photosynthesis. Blackwell Scientific Publ, Oxford

    Google Scholar 

  • Kluge M (1972) Die Sukkulenten: Spezialisten im CO2-Gaswechsel. Biologie in unserer Zeit 8: 121–128

    Google Scholar 

  • Kluge M (1979) The flow of carbon in crassulacean acid metabolism (CAM). In: Gibbs M, Latzko E (eds) Encyclopedia of plant physiology. Springer, Berlin (Photosynthesis II, Photosynthetic carbon metabolism and related processes, Vol 6 ) pp 113–125

    Google Scholar 

  • Kluge M, Ting IP (1978) Crassulacean acid metabolism. Springer, Berlin

    Book  Google Scholar 

  • Osmond CB, Holtum JAM (1981) Crassulacean acid metabolism. In: Hatch MD, Boardman NK (eds) The biochemistry of plants. Academic Press, New York (Photosynthesis, Vol 8 ) pp 283–328

    Google Scholar 

  • Ray TB, Black CC (1979) The C4 and crassulacean acid metabolism pathways. In: Gibbs M, Latzko E (eds) Encyclopedia of plant physiology. Springer, Berlin (Photosynthesis II, Photosynthetic carbon metabolism and related processes, Vol 6 ) pp 77–101

    Google Scholar 

  • Schopfer P (1973) Erfolgreiche Photosynthese-Spezialisten: Die “C4- Pflanzen”. Biologie in unserer Zeit 3: 173–183

    Google Scholar 

  • Smith BN (1982) General characteristics of terrestrial plants (agronomic and forests) - C3, C4 and crassulacean metabolism plants. In: Mitsui A, Black CC (eds) CRC Handbook of biosolar resources. CRC Press, Boca Raton (Basic principles, part 2, Vol 1 ) pp 99–103

    Google Scholar 

Literatur zu 5.8

  • Hanselmann K (1979) Wie Pflanzen Reservestoffe speichern. Biologie in unserer Zeit 9: 103–111

    Article  CAS  Google Scholar 

  • Hanselmann K (1981) Dissimilation pflanzlicher Speicherstoffe. Biologie in unserer Zeit 11: 15–27

    Article  CAS  Google Scholar 

  • Heidt HW (1976) Metabolit transport in intact spinach chloroplasts. In: Barber J (ed) Topics in photosynthesis. Elsevier, Amsterdam (The intact chloroplast, Vol 1 ) pp 215–234

    Google Scholar 

  • Krause GH, Heber U (1976) Energetics of intact chloroplasts. In: Barber J (ed) Topics in photosynthesis. Elsevier, Amsterdam (The intact chloroplast, Vol 1 ) pp 171–214

    Google Scholar 

  • Lenz F (1979) Fruit effects on photosynthesis, light and dark respiration. In: Marcelle R, Clijsters H, van Poucke M (eds) Photosynthesis and plant development. Dr W Junk Publ, Den Haag, pp 271–281

    Google Scholar 

  • Stocking CR, Heber U (1976) Encyclopedia of plant physiology. Springer, Berlin (Transport in plants III, Intracellular interactions and transport processes, Vol 3 )

    Google Scholar 

  • Wardaw IF, Passioura JB (1976) Transport and transfer processes in plants. Academic Press, New York

    Google Scholar 

  • Woolhouse HW (1981) Aspects of the carbon and energy requirements of photosynthesis considered in relation to environmental constraints. In: Townsend CR, Calow P (eds) Physiological ecology: An evolutionary approach to resource use. Blackwell Scientific Publ, Oxford, pp 51–85

    Google Scholar 

Literatur zu E 19

  • Janac J, Catsky J, Jarvis PG (1971) Infrared gas analysers and other physical analysers. In: Sestak Z, Catsky J, Jarvis PG (eds) Plant photosynthetic production - Manual of methods. Dr W Junk Publ, Den Haag, pp 111–197

    Google Scholar 

  • Jantschek H (1982) Ökologische Feldmethoden. Ulmer, Stuttgart

    Google Scholar 

  • Riemer W (1980) Nichtdipersive IR-Analyse in der Photosynthese. Labor-Praxis: 40–44

    Google Scholar 

  • Wiedenroth EM (1976) Methodik der Erfassung des Gaswechsels in Sproß- und Wurzelsystemen intakter Jungpflanzen. Wissenschaftliche Zeitschrift der Humboldt-Universität zu Berlin, Mathematischnatur-wissenschaftliche Reihe 25: 737–741

    CAS  Google Scholar 

Literatur zu E 21

  • Brauner L (1980) Das kleine pflanzenphysiologische Praktikum. G Fischer, Stuttgart

    Google Scholar 

  • Schopfer P (1976) Experimente zur Pflanzenphysiologie. Springer, Berlin 1976

    Book  Google Scholar 

  • Urbach W, Rupp W, Sturm H (1983) Experimente zur Stoffwechsel Physiologie der Pflanzen. Thieme, Stuttgart

    Google Scholar 

Literatur zu E 22

  • Calvin M, Bassham JA (1962) The photosynthesis of carbon Compounds. WA Benjamin, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Buschmann, C., Grumbach, K. (1985). Mechanismus der Photosynthese. In: Physiologie der Photosynthese. Hochschultext. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70255-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70255-6_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-15145-6

  • Online ISBN: 978-3-642-70255-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics