Skip to main content

Archaebacteria and the Origin of the Eukaryotic Cytoplasm

  • Chapter

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 114))

Abstract

The recognition of a third urkingdom of life, the archaebacteria (Woese and Fox 1977; Woese et al. 1978), resulting in the division of the prokaryotic domain (Fox et al. 1980), arose from the perception of the large phylogenetic distance between methanogens and Escherichia coli, which placed these “these bacteria” as far each other as is, for example, the bacterium E. coli from eukaryote yeast. Using the unique nature of archaebacterial lipids (Kates 1972; Langworthy et al. 1974; De Rose et al. 1977; Langworthy 1977; Kates 1978; Tornabene 1979) as a guideline, but comparative cataloging of 16 rRNA (Fox et al. 1977) as the measure, it has been possible to expand the archaebacterial urkingdom to three orders of methanogens (Balch et al. 1979), including the related extreme halophiles, the isolated genus Themoplasma (Darland et al. 1970), and Sulfolobus (Brock et al. 1972), the last two of which are often set apart from the larger part of the kingdom as the “Thermoacidophiles.” On the basis of the SAB (identity coefficient SAB=2NAB/(NA+NB) where NA, NB and NAB are total number of sequences and the identical sequences in two sequence catalogs to be compared) value of 0.17, they appear to be as isolated from each other as from the rest of the kingdom, however.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Balch WE, Fox CE, Magrum LJ, Woese CR, Wolfe RS (1979) Methanogens: reevaluation of a unique biological group. Microbiol Rev 43: 260 - 296

    PubMed  CAS  Google Scholar 

  • Brock TD, Brock KM, Belley RT, Weiss RL (1972) Sulfolobus: a new genus of sulfur oxidizing bacteria living at low pH and high temperature. Arch Microbiol 84: 54 - 68

    Article  CAS  Google Scholar 

  • Darland G, Brock TD, Samsonoff W, Conti SF (1970) A thermophilic acidophilic mycoplasm isolated from a Co A refuse pile. Science 170: 1416 - 1418

    Article  PubMed  CAS  Google Scholar 

  • De Rosa M, De Rosa S, Gambacorta A, Minale L, Bullock JD (1977) Chemical structure of the ether lipids of thermophilic acidophilic archaebacteria of the Caldariella group. Phytochemistry 19: 249 - 254

    Article  Google Scholar 

  • Fischer F, Zillig W, Stetter KO, Schreiber G (1983) Chemolithoautotrophic metabolism of anaerobic extremely thermophilic archaebacteria. Nature 301: 511 - 513

    Article  PubMed  CAS  Google Scholar 

  • Fox GE, Pechmann KJ, Woese CR (1977) Comparative cataloging of 16 S ribosomal RNA: molecular approach to procaryotic systematics. Int J System Bact 27: 44 - 57

    Article  CAS  Google Scholar 

  • Fox GE, Stackebrandt E, Hespell RB, Gibson J, Maniloff J, Dyer TA, Wolfe RS, Balch WE, Tanner RS, Magrum LJ, Zablen LB, Blakemore R, Gupta R, Bonen L, Lewis BJ, Stahl DA, Luehrsen KR, Chen KN, Woese CR (1980) The phylogeny of prokaryotes. Science 209: 457 - 463

    Article  PubMed  CAS  Google Scholar 

  • Fox GE, Luehrsen KR, Woese CR (1982) Archaebacterial 5S ribosomal RNA. Zbl Bakt Hyg, I. Abt. Orig. C 3: 330-354

    Google Scholar 

  • Gupta R, Lanter JM, Woese CR (1983) Sequence of the 16S ribosomal RNA from Halobacterium volcanii, an archaebacterium. Science 221: 656 - 659

    Article  PubMed  CAS  Google Scholar 

  • Henderson E, Oakes M, Clark MW, Lake J A, Matheson AT, Zillig W (1984) A new ribosome structure. Science 225: 510 - 512

    Article  PubMed  CAS  Google Scholar 

  • Hori H, Itoh T, Osawa S (1982) The phylogenic structure of the metabacteria. Zbl Bakt Hyg, I. Abt. Orig. C 3: 18-30

    Google Scholar 

  • Huet J, Schnabel R, Sentenac A, Zillig W (1983) Archaebacteria and eukaryotes possess DNA dependent RNA polymerases of a common type. EMBO J 2: 1291 - 1294

    PubMed  CAS  Google Scholar 

  • Janekovic D, Wunderl S, Holz I, Zillig W, Gierl A, Neumann H (1983) TTV1, TTV2 and TTV3 a family of viruses of the extremely thermophilic, anaerobic, sulfur reducing archaebacterium Thermoproteus tenax. Mol Gen Genet

    Google Scholar 

  • Kaine BP, Gupta R, Woese CR (1983) Putative introns in tRNA genes of prokaryotes. PNAS 80: 3309 - 3312

    Article  PubMed  CAS  Google Scholar 

  • Kandler O (1982) Cell wall structures and their phylogenetic implications. Zbl Bakt Hyg, I. Abt. Orig. C 3: 149 - 160

    CAS  Google Scholar 

  • Kates M (1972) Ether-linked lipids in extremely halophilic bacteria. In: Snyder F (ed) Ether lipids: Chemistry and biology. Academic, New York, pp 351 - 398

    Google Scholar 

  • Kates M (1978) The phytanyl ether-linked polar lipids and isoprenoid neutral lipids of extremely halophilic bacteria. Progr Chem Fats Other Lipids 15: 301 - 342

    Article  CAS  Google Scholar 

  • Kessel M, Klink F (1982) Identification and comparison of eighteen archaebacteria by means of the diphtheria toxin raction. Zbl Bakt Hyg, I. Abt. Orig. C 3: 140-148

    Google Scholar 

  • Konig H, Skorko R, Zillig W, Reiter WD (1982) Glycogen in thermoacidophilic archaebacteria of the genera Sulfolobus, Thermoproteus, Desulfurococcus and Thermococcus. Arch Microbiol 132: 297 - 303

    Article  Google Scholar 

  • Kuchino Y, Hiara M, Yabusaki Y, Nishimura S (1982) Initiator tRNAs from archaebacteria show common unique sequence characteristics. Nature 298: 684 - 685

    Article  PubMed  CAS  Google Scholar 

  • Lake JA, Henderson E, Clark MW, Matheson AT (1982) Mapping evolution with ribosome structure: Intralineage constancy and interlineage variation. Proc Natl Acad Sci USA 79: 5948-5952

    Google Scholar 

  • Lake JA, Henderson E, Oakes M, Clark MW (1984) Eocytes: A new ribosome structure indicates a kingdom with a close relationship to eukaryotes. Proc Natl Acad Sci, USA 81: 3786-3790

    Google Scholar 

  • Langworthy TA (1977) Long-chain diglycerol tetraethers from Thermoplasma acidophilum. Biochim Biophys Acta 487: 37 - 50

    PubMed  CAS  Google Scholar 

  • Langworthy TA, Mayberry WR, Smith PF (1974) Long-chain glycerol diether and polyol dialkyl glycerol triether lipids of Sulfolobus acidocaldarius. J Bact 119: 106 - 116

    PubMed  CAS  Google Scholar 

  • Martin A, Yeats S, Janekovic D, Reiter WD, Aicher W, Zillig W (1984) SAV 1, a temperate u. v.- inducible DNA virus-like particle from the archaebacterium Sulfolobus acidocaldarius isolate B12. The EMBO J. 3: 2165 - 2168

    CAS  Google Scholar 

  • Matheson AT, Yaguchi M (1982) The evolution of the archaebacterial ribosome. Zbl Bakt Hyg, I Abt Orig C 3: 192-199

    Google Scholar 

  • McConnell DJ, Searcy DG, Sutcliffe JG (1978) A restriction enzyme Tha I from the thermophilic mycoplasma Thermoplasma acidophilum. Nucleic Acids Res 5: 1729 - 1739

    Article  PubMed  CAS  Google Scholar 

  • Mescher MF, Strominger JL (1975) Purification and characterization of a prokaryotic glycoprotein from the cell envelope of Halobacterium salinarium. J Biol Chem 251: 2005 - 2014

    Google Scholar 

  • Prangishvilli D, Zillig W, Gierl A, Biesert L, Holz I (1982) DNA-dependent RNA polymerases of thermoacidophilic archaebacteria. Eur J Biochem 122: 471 - 477

    Article  PubMed  CAS  Google Scholar 

  • Prangishvilli D, Zillig W (1984) DNA-dependent DNA-polymerases of thermoacidophilic archaebacterium Sulfolobus acidocaldarius. Poster presented at the FEMS Symposium “Evolution of Prokaryotes”, held in Munich, September 16 - 18, 1984

    Google Scholar 

  • Schleifer KH, Steber J, Mayer H (1982) Chemical composition and structure of the cell wall of Halococcus morrhuae. Zbl Bakt Hyg, I Abt Orig C3: 171-178

    Google Scholar 

  • Schmid G, Pecher T, Bock A (1982) Properties of the translational apparatus of archaebacteria. Zbl Bakt Hyg, I Abt Orig C3: 209–217

    Google Scholar 

  • Schnabel H, Zillig W, Pfaffle M, Schnabel R, Michel H, Delius H (1982 a) Halobacterium halobium phage φ H. EMBO J 1:87–92

    Google Scholar 

  • Schnabel H, Schramm E, Schnabel R, Zillig W (1982b) Structural variability in the genome of phage φ H of Halobacterium halobium. Mol Gen Genet 188: 370 - 377

    Article  CAS  Google Scholar 

  • Schnabel R, Sonnenbichler J, Zillig W (1982) Stimulation by silybin, a eukaryotie feature of archaebacterial RNA polymerases (1982) FEBS L 150: 400 - 402

    Article  CAS  Google Scholar 

  • Schnabel R, Thomm M, Gerardy-Schahn R, Zillig W, Stetter KO, Huet J (1983) Structural homology between different archaebacterial DNA-dependent RNA polymerases analyzed by immunological comparison of their components. EMBO J 2: 751 - 755

    PubMed  CAS  Google Scholar 

  • Segerer A, Stetter KO, Klink F (1985) Two contrary modes of autotrophy in the same archaebacterium. Nature, in press

    Google Scholar 

  • Steitz JA (1978) Methanogenic bacteria. Nature 273: 10

    Article  PubMed  CAS  Google Scholar 

  • Tornabene TG and Langworthy TA (1979) Diphytanyl and dibiphytanyl glycerol ether lipids of methanogenic archaebacteria. Science 203: 51 - 53

    Article  PubMed  CAS  Google Scholar 

  • Tu J, Prangishvilli P, Huber H, Wildgruber G, Zillig W, Stetter KO (1982) Taxonomic relations between archaebacteria including 6 novel genera examined by cross hybridization of DNAs and 16S rRNAs. J Mol Evol 18: 109 - 114

    Article  PubMed  CAS  Google Scholar 

  • Weiss RL (1974) Subunit cell wall of Sulfolobus acidocaldarius. J Bacterid 118: 275 - 284

    CAS  Google Scholar 

  • Wieland F, Lechner J, Sumper MC (1982) The cell wall glycoprotein of halobacteria: structural, functional and biosynthetic aspects. Zbl Bakt Hyg, I Abt Orig C 3: 161-170

    Google Scholar 

  • Woese CR, Fox GE (1977) Phylogenetic structure of the prokaryotic domain: The primary kingdoms. Proc natl Acad Sci USA 74: 5088-5090

    Google Scholar 

  • Woese CR, Magrum LJ, Fox GE (1978) Archaebacteria. J Mol Evol 11: 245 - 252

    Article  CAS  Google Scholar 

  • Woese CR, Gupta R, Hahn CM, Zillig W, Tu J (1984) The phylogenetic relationships of three sulfur dependent archaebacteria. System Appl Microbiol 5: 97 - 105

    CAS  Google Scholar 

  • Zillig W, Stetter KO, Schafer W, Janekovic D, Wunderl S, Holz I, Palm P ( 1981 a) Thermoproteales: a novel type of extremely thermoacidophilic anaerobic archaebacteria isolated from Icelandic solfataras. Zbl Bakt Hyg, I Abt Orig C 2: 205-227

    Google Scholar 

  • Zillig W, Tu J, Holz I (1981 b) Thermoproteales - a third order of thermoacidophilic archaebacteria. Nature 293:85–86

    Google Scholar 

  • Zillig W, Stetter KO, Prangishvilli D, Schafer W, Wunderl S, Janekovic D, Holz I, Palm P ( 1982 a) Desulfurococcaceae, the second family of the extremely thermophilic, anaerobic, sulfur-respiring Thermoproteales. Zbl Bakt Hyg, I Abt Orig C 3: 304-317

    Google Scholar 

  • Zillig W, Schnabel R, Tu J, Stetter KO (1982 b) The phylogeny of archaebacteria, including novel anaerobic thermoacidophiles in the light of RNA polymerase structure. Naturwissenschaften 69:197–204

    Google Scholar 

  • Zillig W, Stetter KO, Schnabel R, Madon J, Gierl A (1982c) Transcription in archaebacteria. Zbl Bakt Hyg, I Abt Orig C 3: 218-227

    Google Scholar 

  • Zillig W, Gierl A, Schreiber G, Wunderl S, Janekovic D, Stetter KO, Klenk HP (1983 a) The archaebacterium Thermofilum pendens represents a novel genus of the thermophilic, anaerobic sulfur respiring Thermoproteales. System Appl Microbiol 4:79–87

    Google Scholar 

  • Zillig W, Holz I, Janekovic D, Schafer W, Reiter WD (1983 b) The archaebacterium Thermococcusceler represents a novel genus within the thermophilic branch of the archaebacteria. System Appl Microbiol 4:88–94

    Google Scholar 

  • Zillig W, Schnabel R, Stetter K, Thomm M, Gropp F, Reiter WD. The Evolution of the Transcription Apparatus. In “The Evolution of the Prokaryotes”. K.H. Schleifer and E. Stackebrandt, eds., Academic Press, New York, in press

    Google Scholar 

  • Zillig W, Yeats S, Holz, I, Bock A, Gropp F, Rettenberger M, Lutz S (1985) Plasmid-related anaerobic autotrophy of the novel archaebacterium Sulfolobus ambivalens. Nature, in press

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Zillig, W., Schnabel, R., Stetter, K.O. (1985). Archaebacteria and the Origin of the Eukaryotic Cytoplasm. In: Cooper, M., et al. Current Topics in Microbiology and Immunology. Current Topics in Microbiology and Immunology, vol 114. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70227-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70227-3_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-70229-7

  • Online ISBN: 978-3-642-70227-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics