The Cap Structure of Eukaryotic Messenger RNA and its Interaction with Cap-binding Protein

  • R. E. Rhoads
Part of the Progress in Molecular and Subcellular Biology book series (PMSB, volume 9)


This article is a review of what is known about the 7-methylguanosine-containing “cap” structure of eukaryotic messenger RNA and its participation in the initiation of protein synthesis. Particular attention will be paid to the protein which is thought to mediate the entry of mRNA into the cycle of protein synthesis by recognizing the cap structure, termed cap-binding protein (CBP). Previous review articles dealing with this or related topics include those of Shatkin (1976), Banerjee (1980), Ehrenfeld (1982), Penman (1982) and Nielsen et al. (1983). The primary focus of this review will be translational events. Topics which will not be treated include biosynthesis of caps (Rottman 1978; Banerjee 1980), the role of the cap structure in stabilization of mRNA against degradation (Shimotohno et al. 1977; Furuichi et al. 1977), and the CBP which is involved in initiation of transcription of influenza virus (Blaas et al. 1982).


Initiation Factor Initiation Complex Semliki Forest Virus Alfalfa Mosaic Virus mRNA Secondary Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abraham, K.A., Lillehaug, J.R.: Enzymatic cleavage of m7GDP from eukaryotic mRNA. FEBS Lett. 71, 49–52 (1976)Google Scholar
  2. Adams, J.M., Cory, S.: Modified nucleosides and bizzare 5’-termini in mouse myeloma mRNA. Nature (London) 255, 28–33 (1975)Google Scholar
  3. Adams, B.L., Morgan, M., Muthukrishnan, S., Hecht, S.M., Shatkin, A.J.: The effect of “cap” analogs on reovirus mRNA binding to wheat germ ribosomes. J. Biol. Chem. 253, 2589–2595 (1978)Google Scholar
  4. Asselsbergs, A.M., Peters, W., Van Venrooij, W.J., Bloemendal, H.: Diminished sensitivity of re-initiation of translation to inhibition by cap analogues in reticulocyte lysates. Eur. J. Biochem. 88, 483–488 (1978a)Google Scholar
  5. Asselsberg, A.M., Peters, W., Van Venrooij, W.J., Bloemendal, H.: Inhibition of translation of lens mRNAs in a messenger dependent reticulocyte lysate by cap analogues. Biochim. Biophys. Acta 520, 577–587 (1978b)Google Scholar
  6. Baglioni, C., Simili, M., Shafritz, D.A.: Initiation activity of EMC virus RNA, binding to initiation factor eIF–4B and shut-off of host cell protein synthesis. Nature (London) 275, 240–24 (1978)Google Scholar
  7. Banerjee, A.K.: 51-Terminal cap structure in eucaryotic messenger ribonucleic acids. Microbiol. Rev. 44, 175–205 (1980)Google Scholar
  8. Baralle, F.E., Brownlee, G.G.: AUG is the only recognisable signal seguence in the 5’ non-coding regions of eukaryotic mRNA. Nature (London) 274, 84–87 (1978)Google Scholar
  9. Benne, R., Hershey, J.W.B.: The mechanism of action of protein synthesis initiation factors from rabbit reticulocytes. J. Biol. Chem. 253, 3078–3087 (1978)Google Scholar
  10. Bergmann, J.E., Trachsel, H., Sonenberg, N., Shatkin, A.J., Lodish, H.F.: Characterization of rabbit reticulocyte factor(s) that stimulates the translation of mRNAs lacking 5’-terminal 7-methylguanosine. J. Biol. Chem. 254, 1440–1443 (1979)Google Scholar
  11. Blaas, D., Patzelt, E., Kuechler, E.: Identification of the cap binding protein of influenza virus. Nucleic Acids Res. 10, 4803–4812 (1982)Google Scholar
  12. Both, G.W., Banerjee, A.K., Shatkin, A.J.: Methylation-dependent translation of viral messenger RNAs in vitro. Proc. Natl. Acad. Sci. USA 72, 1189–1193 (1975a)Google Scholar
  13. Both, G.W., Furuichi, Y., Muthukrishnan, S., Shatkin, A.J.; Ribosome binding to reovirus mRNA in protein synthesis requires 5’-terminal 7-methylguanosine Cell 6, 185–195 (1975b)Google Scholar
  14. Both, G.W., Furuichi, Y., Muthukrishnan, S., Shatkin, A.J.: Effect of 5’-terminal structure and base composition on polyribonucleotide binding to ribosomes. J. Mol. Biol. 104, 637–658 (1976)Google Scholar
  15. Brether, H.-J., Malek, L.T., Hellmann, G.M., Rhoads, R.E.: Determination of 7-methylguanosine-containing 5’-termini of messenger ribonucleic acid by NaB[3H]4 labeling and high performance liquid anion exchange chromatography. Anal. Biochem. 98, 102–111 (1979)Google Scholar
  16. Busa, W.B., Crowe, J.H.: Intracellular pH regulates transition between dormancy and development of brine shrimp (Arternia salina) embryos. Science 221, 366–368 (1983)Google Scholar
  17. Canaani, D., Revel, M., Groner, Y.: Translational discrimination of “capped” and “non-capped” mRNAs: Inhibition by a series of chemical analogs of m7GpppX. FEBS Lett. 64, 326–331 (1976)Google Scholar
  18. Cervera, M., Dreyfuss, G., Penman, S.: Messenger RNA is translated when associated with the cytoskeletal framework in normal and VSV-infected HeLa cells. Cell 23, 113–120 (1981)Google Scholar
  19. Checkley, J.W., Cooley, L., Ravel, J.M.: Characterization of initiation factor eIF-3 from wheat germ. J. Biol. Chem. 256, 1582–1586 (1981)Google Scholar
  20. Christen, R., Schackmann, R.W., Shapiro, B.M.: Elevation of the intracellular pH activates respiration and motility of sperm of the sea urchin, Strongylocentvotus purpuratus. J. Biol. Chem. 252, 14881–14890 (1982)Google Scholar
  21. Chu, L.-Y., Rhoads, R.E.: Translational recognition of the 5’-terminal 7-methylguanosine of globin mRNA as a function of ionic strength. Biochemistry 17, 2540–2455 (1978)Google Scholar
  22. Chu, L.-Y., Rhoads, R.E.: Inhibition of cell-free messenger ribonucleic acid translation by 7-methylguanosine 5’-triphosphate: Effect of messenger ribonucleic acid concentration. Biochemistry 19, 184–191 (1980)Google Scholar
  23. Chu, L.-Y., Lockard, R.E., Rajbhandary, U.L., Rhoads, R.E.: Paradoxical observations on the 5’-terminus of ovalbumin messenger ribonucleic acid. J. Biol. Chem. 253, 5228–5231 (1978)Google Scholar
  24. Daniels-McQueen, S., Detjen, B.M., Grifo, J.A., Merrick, W.C., Thach, R.E.: Unusual requirements for optimum translation of polio viral RNA in vitro. J. Biol. Chem. 258, 7195–7199 (1983)Google Scholar
  25. Darzynkiewicz, E., Antosiewicz, J., Ekiel, I., Morgan, M.A., Tahara, S.M., Shatkin, A.J.: Methyl esterification of m7G5’p reversibly blocks its activity as an analog of eukaryotic mRNA 5’-caps. J. Mol. Biol. 153, 451–458 (1981)Google Scholar
  26. Detjen, B.M., Walden, W.E., Thach, R.E.: Translational specificity in reovirusinfected mouse fibroblasts. J. Biol. Chem. 257, 9855–9860 (1982)Google Scholar
  27. Duncan, R., Etchison, D., Hershey, J.W.B.: Protein synthesis eukaryotic initiation factors eIF4A and eIF4B are not altered by poliovirus infection of HeLa cells. J. Biol. Chem. 258, 7236–7239 (1983)Google Scholar
  28. Edery, I., Humbelin, M., Darveau, A., Lee, K.A.W., Milburn, S., Hershey, J.W.B., Trachsel, H., Sonenberg, N.: Involvement of eukaryotic initiation factor 4A in the cap recognition process. J. Biol. Chem. 258, 11398–11403 (1983)Google Scholar
  29. Edery, I., Lee, K.A.W., Sonenberg, N.: Functional characteristics of eukaryotic mRNA cap binding protein complex: Effects on translation of capped and naturally uncapped RNAs. Biochemistry 23, 2456–2462 (1984)Google Scholar
  30. Efstratiadis, A., Vournakis, J.N., Donis-Keller, H., Chaconas, G., Dougall, D.K., Kafatos, F.C.: End labeling of enzymatically decapped mRNA. Nucleic Acids Res. 4, 4165–4174 (1977)Google Scholar
  31. Ehrenfeld, E.: Poliovirus-induced inhibition of host-cell protein synthesis. Cell 28, 435–436 (1982)Google Scholar
  32. Ehrenfeld, E.: Picornavirus inhibition of host cell protein synthesis. In: Comprehensive Virology (eds. H. Fraenkel-Conrat, R.R. Wagner ). New York: Plenum Press 1984Google Scholar
  33. Etchison, D., Milburn, S.C., Edery, I., Sonenberg, N., Hershey, J.W.B.: Inhibition of HeLa cell protein synthesis following poliovirus infection correlates with the proteolysis of a 220,000–dalton polypeptide associated with eukaryotic initiation factor 3 and a cap binding protein complex. J. Biol. Chem. 257, 14806–14810 (1982)Google Scholar
  34. Etchinson, D., Hansen, J., Ehrenfeld, E., Edery, I., Sonenberg, N., Milburn, S., Hershey, J.W.B.: Demonstration in vitro that eukaryotic initiation factor 3 is active but cap-binding protein complex is inactive in poliovirus-infected HeLa cells. J. Virol. 51, 832–837 (1984)Google Scholar
  35. Filipowicz, W., Furuichi, Y., Sierra, J.M., Muthkrishnan, S., Shatkin, A.J., Ochoa, S.: A protein binding the methylated 5’-terminal sequence, m7GpppN, of eukaryotic messenger RNA. Proc. Natl. Acad. Sci. USA 73, 1559–1563 (1976)Google Scholar
  36. Furuichi, Y., Miura, K.: A blocked structure at the 5’-terminus of mRNA from cytoplasmic polyhedrosis virus. Nature (London) 253, 374–375 (1975)Google Scholar
  37. Furuichi, Y., Muthukrishnan, S., Shatkin, A.J.: 5’-Terminal m7G (5’) ppp (5’) Gmp in vivo: Identification in reovirus genome RNA. Proc. Natl. Acad. Sci. USA 72, 742–745 (1975)Google Scholar
  38. Furuichi, Y., Lafiandra, A., Shatkin, A.J.: 5’-Terminal structure and mRNA stability. Nature (London) 266, 235–239 (1977)Google Scholar
  39. Furuichi, Y., Morgan, M.A., Shatkin, A.J.: Synthesis and translation of mRNA containing 5’-terminal 7-ethylguanosine cap. J. Biol. Chem. 254, 6732–6738 (1979)Google Scholar
  40. Gehrke, L., Auron, P.E., Quigley, G.J., Rich, A., Sonenberg, N.: 5’-Conformation of capped alfalfa mosaic virus ribonucleic acid 4 may reflect its independence of the cap structure or of cap-binding protein for efficient translation. Biochemistry 22, 5157–5164 (1983)Google Scholar
  41. Gerson, D.F., Kiefer, H., Eufe, W.: Intracellular pH of mitogen-stimulated lymphocytes. Science 216, 1009–1010 (1982)Google Scholar
  42. Grifo, J.A., Tahara, S.M., Leis, J.P., Morgan, M.A., Shatkin, A.J., Merrick, W.C.: Characterization of eukaryotic initiation factor 4A, a protein involved in ATP-dependent binding of globin mRNA. J. Biol. Chem. 257, 5246–5252 (1982)Google Scholar
  43. Grifo, J.A., Tahara, S.M., Morgan, M.A., Shatkin, A.J., Merrick, W.C.: New initiation factor activity required for globin mRNA translation. J. Biol. Chem. 258, 5804–5810 (1983)Google Scholar
  44. Grifo, J.A., Abramson, R.D., Satler, C.A., Merrick, W.C.: RNA stimulated ATPase activity of eukaryotic initiation factors. J. Biol. Chem. 259, 8648–8654 (1984)Google Scholar
  45. Hansen, J.L., Ehrenfeld, E.: Presence of the cap-binding protein in initiation factor preparations from poliovirus-infected HeLa cells. J. Virol. 38, 438–445 (1981)Google Scholar
  46. Hansen, J.L., Etchison, D.O., Hershey, J.W.B., Ehrenfeld, E.: Localization of cap-binding protein in subcellular fraction of HeLa cells. Mol. Cell. Biol. 2, 1639–1643 (1982a)Google Scholar
  47. Hansen, J.L., Etchison, D., Hershey, J.W.B., Ehrenfeld, E.: Association of cap-binding protein with eukaryotic initiation factor 3 in initiation factor preparations from uninfected and poliovirus-infected HeLa cells. J. Virol. 42, 200–207 (1982b)Google Scholar
  48. Hari, V.: The RNA of tobacco etch virus: Further characterization and detection of protein linked to RNA. Virology 112, 391–399 (1981)Google Scholar
  49. Hattori, M., Miura, K., Yamaguchi, K., Ohtani, S., Hata, T.: Interaction between bases involved in the 5’-terminal cap structure of eukaryotic mRNA. Nucleic Acids Res. Spec. Publ. No. 5 (1978)Google Scholar
  50. Hecht, S.M., Adams, B.L., Kozarich, J.W.: Chemical transformations of 7, 9-disubstituted purines and related heterocycles. Selective reduction of imines and immonium salts. J. Org. Chem. 41, 2305–2311 (1976)Google Scholar
  51. Held, W.A., West, K., Gallagher, J.F.: Importance of initiation factor preparations in the translation of reovirus and globin mRNAs lacking a 5’-terminal 7-methylguanosine. J. Biol. Chem. 252, 8489–8497 (1977)Google Scholar
  52. Helentjaris, T., Ehrenfeld, E.: Control of protein synthesis in extracts from poliovirus-infected cells. I. mRNA discrimination by crude initiation factors. J. Virol. 26, 510–521 (1978)Google Scholar
  53. Helentjaris, T., Ehrenfeld, E., Brown-Luedi, M.L., Hershey, J.W.B.: Alterations in initiation factor activity from poliovirus-infected HeLa cells. J. Biol. Chem. 254, 10973–10978 (1979)Google Scholar
  54. Hellmann, G.M., Shaw, J.G., Lesnaw, J.A., Chu, L.-Y., Pirone, T.P., Rhoads, R.E.: Cell-free translation of tobacco vein mottling virus RNA. Virology 106, 207–216 (1980)Google Scholar
  55. Hellmann, G.M., Chu, L.-Y., Rhoads, R.E.: A polypeptide which reverses cap analogue inhibition of cell-free protein synthesis. J. Biol. Chem. 257, 4056–4062 (1982)Google Scholar
  56. Hendler, S., Furer, E., Srinivasan, P.R.: Synthesis and chemical properties of monomers and polymers containing 7-methylguanine and an investigation of their substrate or template properties for bacterial DNA or RNA polymerase. Biochemistry 9, 4141–4153 (1970)Google Scholar
  57. Hickey, E.D., Weber, L.A., Baglioni, C.: Inhibition of initiation of protein synthesis by 7-methylguanosine-5’-monophosphate. Proc. Natl. Acad. Sci. USA 73, 19–23 (1976)Google Scholar
  58. Hickey, E.D., Weber, L.A., Baglioni, C., Kim, C.H., Sarma, R.H.: A relation between inhibition of protein synthesis and conformation of 5’-phosphorylated 7-methylguanosine derivatives. J. Mol. Biol. 109, 173–183 (1977)Google Scholar
  59. Howe, J.G., Hershey, J.W.B.: Translational initiation factor and ribosome association with the cytoskeletal framework fraction from HeLa cells. Cell 37, 85–93 (1984)Google Scholar
  60. Ishida, T., Katsuta, M., Inoue, M., Yamagata, Y., Tomita, K.: The stacking interactions in 7-methylguanine-tryptophan systems, a model study for the interaction between the ‘cap’ structure of mRNA and its binding protein. Biochem. Biophys. Res. Commun. 115, 849–854 (1983)Google Scholar
  61. Jagus, R., Anderson, W.F., Safer, B.: The regulation of initiation of mammalian protein synthesis. In: Progress in Nucleic Acid Research and Molecular Biology (eds. W.E. Cohn, E. Volkin), Vol. XXV, pp. 127–185. London, New York: Academic Press 1981CrossRefGoogle Scholar
  62. Jeffery, W.R.: Messenger RNA in the cytoskeletal framework: Analysis by in situ hybridization. J. Cell Biol. 95, 1–7Google Scholar
  63. Jen, G., Thach, R.E.: Inhibition of host translation in encephalomyocarditis virus-infected L cells: a novel mechanism. J. Virol. 43, 250–261 (1982)Google Scholar
  64. Jen, G., Detjen, B.M., Thach, R.E.: Shutoff of HeLa cell protein synthesis by encephalomyocarditis virus and poliovirus: a comparative study. J. Virol. 35, 150–156 (1980)Google Scholar
  65. Kabat, D., Chappell, M.R.: Competition between globin messenger ribonucleic acids for a discriminating initiation factor. J. Biol. Chem. 252, 2684–2690 (1977)Google Scholar
  66. Kaempffer, R., Rosen, H., Israeli, R.: Translation control: Recognition of the methylated 5’ end and an internal sequence in eukaryotic mRNA by the initiation factor that binds met-tRNAmet. Proc. Natl. Acad. Sci. USA 75, 650–654 (1978)CrossRefGoogle Scholar
  67. Kemper, B., Stolarsky, L.: Dependence on potassium concentration of the inhibition of the translation of messenger ribonucleic acid by 7-methylguanosine 5’-phosphate. Biochemistry 16, 5676–5680 (1977)Google Scholar
  68. Kim, C.H., Sarma, R.H.: Spatial configuration of mRNA 5’-terminus. Nature (London) 270, 223–227 (1977)Google Scholar
  69. Koch, G., Bilello, J.A., Kruppa, J., Koch, F., Oppermann, H.: Amplification of translational control by membrane-mediated events: a pleiotropic effect on cellular and viral gene expression. Ann. N.Y. Acad. Sci. 339, 280–307 (1980)Google Scholar
  70. Kozak, M.: How do eucaryotic ribosomes select initiation regions in messenger RNA? Cell 15, 1109–1123 (1978)Google Scholar
  71. Kozak, M.: Role of ATP in binding and migration of 40S ribosomal subunits. Cell 22, 459–467 (1980a)Google Scholar
  72. Kozak, M.: Influence of mRNA secondary structure on binding and migration of 40S ribosomal subunits. Cell 19, 79–90 (1980b)Google Scholar
  73. Kozak, M., Shatkin, A.J.: Identification of features in 5’-terminal fragments from reovirus mRNA which are important for ribosome binding. Cell 13, 201–212 (1978)Google Scholar
  74. Kozarich, J.W., Deegan, J.L.: 7-Methylguanosine-dependent inhibition of globin mRNA translation by methylglyoxal. J. Biol. Chem. 254, 9345–9348 (1979)Google Scholar
  75. Kroath, H., Shatkin, A.J.: mRNA 5’-cap binding activity in purified influenza virus detected by simple, rapid assay. J. Virol. 41, 1105–1108 (1982)Google Scholar
  76. Lee, K.A.W., Sonenberg, N.: Inactivation of cap-binding proteins accompanies the shut-off of host protein synthesis by poliovirus. Proc. Natl. Acad. Sci. USA 79, 3447–3451 (1982)Google Scholar
  77. Lee, K.A.W., Guertin, D. Sonenberg, N.: mRNA secondary structure as a determinant in cap recognition and initiation complex formation. J. Biol. Chem. 258, 707–710 (1983)Google Scholar
  78. Lemieux, R., Beaud, G.: Expression of vaccinia virus early mRNA in Ehrlich ascites tumor cells. 2. Part of the polysomes at an early stage of virus infection are not bound to the cytoskeleton. Eur. J. Biochem. 129, 273–279 (1982)Google Scholar
  79. Lenk, R., Penman, S.: The cytoskeletal framework and poliovirus metabolism. Cell 16, 289–301 (1979)Google Scholar
  80. Lenk, R., Ransom, L., Kaufmann, Y., Penman, S.: A cytoskeletal structure with associated polyribosomes obtained from HeLa cells. Cell 10, 67–78 (1977)Google Scholar
  81. Lockard, R.E., Rajbhandary, U.L.: Nucleotide sequences at the 5’-termini of rabbit a and 6 globin mRNA. Cell 9, 747–760 (1976)Google Scholar
  82. Lodish, H.F.: Translational control of protein synthesis. In; Annual Review of Biochemistry (eds. E.E. Snell, P.D. Boyer, A. Meister, C.C. Richardson), Vol. 45. Palo Alto. California: Annual Review Inc. 1976Google Scholar
  83. Lodish, H.F., Rose, J.K.: Relative importance of 7-methylguanosine in ribosome binding and translation of vesicular stomatitis virus mRNA in wheat germ and reticulocyte cell-free systems. J. Biol. Chem. 252, 1181–1188 (1977)Google Scholar
  84. Malek, L.T., Eschenfeldt, W.H., Munns, T.W., Rhoads, R.E.: Heterogeneity of the 5’-terminus of ovalbumin messenger ribonucleic acid. Nucleic Acids Res. 9, 1657–1673 (1981)Google Scholar
  85. Marcus, A.: Tobacco mosaic virus ribonucleic acid-dependent amino acid incorporation in a wheat germ embryo system in vitro. Analysis of the rate-limiting reaction. J. Biol. Chem. 245, 955–961 (1970a)Google Scholar
  86. Marcus, A.: Tobacco mosaic virus ribonucleic acid dependent amino acid incorporation in a wheat germ embryo system in vitro. Formation of a ribosome-messenger “initiation” complex. J. Biol. Chem. 245, 962–966 (1970b)Google Scholar
  87. Mariman, E., Hagebols, A.-M., Van Venrooij, W.: On the localization and transport of specific adenoviral mRNA-sequences in the late infected HeLa cell. Nucleic Acids Res. 10, 6131–6145 (1982)Google Scholar
  88. Mayo, M.A., Barker, H., Harrison, B.D.: Evidence for a protein covalently linked to tobacco ringspot virus RNA. J. Gen. Virol. 43, 735–740 (1979)Google Scholar
  89. Morgan, M.A., Shatkin, A.J.: Initiation of reovirus transcription by inosine 5’-triphosphate and properties of 7-methylinosine-capped, inosine-substituted messenger RNA. Biochemistry 19, 5960–5966 (1980)PubMedCrossRefGoogle Scholar
  90. Moss, B.: 5’-Terminal cap structures of eukaryotic and viral mRNAs. In: Processing of RNA (ed. D. Apirion ), pp. 119–127. Florida: CRC Press 1984Google Scholar
  91. Muthukrishnan, S., Both, G.W., Furuichi, Y., Shatkin, A.J.: 5’-Terminal 7- methylguanosine in eukaryotic mRNA is required for translation. Nature (London) 255, 33–37 (1975)Google Scholar
  92. Muthukrishnan, S., Morgan, M., Banerjee, A.K., Shatkin, A.J.: Influence of 5’-terminal m7G and 2’ —O—methylated residues on messenger RNA binding to ribosomes. Biochemistry 15, 5761–5768 (1976)Google Scholar
  93. Muthukrishnan, S., Moss, B., Cooper, J.A., Maxwell, E.S.: Influence of 5’-terminal cap structure on the initiation of translation of vaccinia virus mRNA. J. Biol. Chem. 253, 1710–1715 (1978)Google Scholar
  94. Nielsen, P., Goelz, S., Trachsel, H.: The role of the cytoskeleton in eukaryotic protein synthesis. Cell Biol. Int. Rep. 7, 245–254 (1983)Google Scholar
  95. Nishimura, Y., Yamamoto, T., Tsuboi, M.: The nature of the fluorescence spectra of some minor bases obtained from tRNA and mRNA. Nucleic Acids. Res. Spec. Publ. No. 3, s85–s88 (1977)Google Scholar
  96. Nishimura, Y., Takahashi, S., Yamamoto, T., Tsuboi, M., Hattori, M., Miura, K., Yamaguchi, K., Ohtani, S., Hata, T.: On the base-stacking in the 5’-terminal cap structure of mRNA: a fluorescence study. Nucleic Acids. Res. 8, 1107–1119 (1980)Google Scholar
  97. Padilla, M., Canaani, D., Groner, Y., Weinstein, J.A., Bar-Joseph, M., Merrick, W., Shafritz, D.A.: Initiation factor eIF-4B (IF-M3)-dependent recognition and translation of cappes versus uncapped eukaryptic mRNAs. J. Biol. Chem. 253, 5939–5945 (1978)Google Scholar
  98. Parets-Soler, A., Reibel, L., Shapira, G.: Differential stimulation of a and ß-globin mRNA translation by Mr 50,000 and 28,000 polypeptide containing fractions isolated from reticulocyte polysomes. FEBS Lett. 136, 259–264 (1981)Google Scholar
  99. Patzelt, E., Blaas, D., Kuechler, E.: Cap binding proteins associated with the nucleus. Nucleic Acids Res. 11, 5821–5835 (1983)Google Scholar
  100. Pelham, H.R.B., Jackson, R.J.: An efficient mRNA-dependent translation system from reticulocyte lysates. Eur. J. Biochem. 67, 247–256 (1976)Google Scholar
  101. Penman, S.: Protein synthesis for cell architecture. In: Interaction of Translational and Transcriptional Controls in the Regulation of Gene Expression (eds. M. Grunberg-Manago, B. Safer), Vol. XXIV, pp. 243–264. Amsterdam, New York: Elsevier Science Publishing Company 1982Google Scholar
  102. Pochon, F., Pascal, Y., Pitha, P., Michelson, A.M.: Photochimie des polynucleotides. IV. Photochimie de quelques nucleosides puriques methyles. Biochim. Biophys. Acta 213, 273–281 (1970)Google Scholar
  103. Raghow, R., Granoff, A.: Cell-free translation of frog virus 3 messenger RNAs. J. Biol. Chem. 258, 571–578 (1983)Google Scholar
  104. Ray, B.K., Brendler, T.G., Adya, S., Daniels-McQueen, S., Miller, J.K., Hershey, J.W.B., Grifo, J.A., Merrick, W.C., Thach, R.E.: Role of mRNA competition in regulating translation: Further characterization of mRNA discriminatory initiation factors. Proc. Natl. Acad. Sci. USA 80, 663–667 (1983)Google Scholar
  105. Ray, B.K., Cladaras, M.H., Grifo, J.A., Abramson, R.D., Merrick, W.C., Thach, R.E.: How mRNA structure is unwound after recognition by translation initiation factors. Personal communicationGoogle Scholar
  106. Rhoads, R.E., Hellmann, G.M., Remy, P., Ebel, J.-P.: Translational recognition of messenger RNA caps as a function of pH. Biochemistry 22, 6084–6088 (1983)Google Scholar
  107. Roman, R., Brooker, J.D., Seal, S.N., Markus, A.: Inhibition of the transition of a 40S ribosome-Met-tRNAiMet complex to an 80S ribosome-Met-tRNAiMet complex by 7-methylguanosine-5’-phosphate. Nature (London) 260, 359–360 (1976)Google Scholar
  108. Rose, J.K., Lodish, H.F.: Translation in vitro of vesicular stomatitis virus mRNA lacking 5’-terminal 7-methylguanosine. Nature (London) 262, 32–37 (1976)Google Scholar
  109. Rose, J.K., Trachsel, H., Leong, K., Baltimore, D.: Inhibition of translation by poliovirus: inactivation of a specific initiation factor. Proc. Natl. Acad. Sci. USA 75, 2732–2736 (1978)Google Scholar
  110. Rosenberg, M., Paterson, B.M.: Efficient cap-dependent translation of polycistronic prokaryotic mRNAs is restricted to the first gene in the operon. Nature (London) 279, 696–701 (1979)Google Scholar
  111. Rottman, F.M.: Methylation and polyadenylation of heterogeneous nuclear and messenger RNA. In: Biochemistry of Nucleic Acids II (ed. B.F.C. Clark), Vol. XVII, pp. 45–73. Baltimore, Maryland: University Park Press 1978Google Scholar
  112. Rottman, E.M., Shatkin, A.J., Perry, R.P.: Sequences containing methylated nucleotides at the 5’-termini of messenger RNA’s: Possible implications for processing. Cell 3, 197–199 (1974)Google Scholar
  113. Rupprecht, K.M., Sonenberg, N., Shatkin, A.J., Hecht, S.M.: Design and preparations of affinity columns for the purification of eukaryotic messenger ribonucleic acid cap binding protein. Biochemistry 20, 6570–6577 (1981)Google Scholar
  114. Sarkar, G., Edery, I., Gallo, R., Sonenberg, N.: Preferential stimulation of rabbit a globin mRNA translation by a cap binding protein complex. Biochim. Biophys. Acta, in press (1984)Google Scholar
  115. Sasavage, N.L., Friderici, K., Rottman, F.M.: Specific inhibition of capped mRNA translation in vitro by m7G5’ pppp5’G and m7G5’. Nucleic Acids Res. 6, 3613–3624 (1979)Google Scholar
  116. Seal, S.N., Schmidt, A., Tomaszewski, M., Marcus, A.: Inhibition of noncapped mRNA translation by the cap analogue, 7-methylguanosine-5’-phosphate. Biochem. Biophys. Res. Commun. 82, 553–559 (1978)Google Scholar
  117. Shafritz, D.A., Weinstein, J.A., Safer, B., Merrick, W.C., Weber, L.A., Hickey, E.D., Baglioni, C.: Evidence for role of m7G5’-phosphate group in recognition of eukaryotic mRNA by initiation factor IF-M3. Nature (London) 261, 291–294 (1976)Google Scholar
  118. Shapiro, R.: Chemistry of guanine and its biologically significant derivatives. Prog. Nucleic Acid Res. Mol. Biol. 8, 73–112 (1968)Google Scholar
  119. Sharma, O.K., Hruby, D.E., Beezley, D.N.: Inhibition of ovalbumin mRNA translation by 7-methyIguanosine-5’-phosphate. Biochem. Biophys. Res. Commun. 72, 1392–1398 (1976)Google Scholar
  120. Sharpe, A.H., Chen, L.B., Murphy, J.R., Fields, B.N.: Specific disruption of vimentin filament organization in monkey kidney CV-1 cells by diphtheria toxin, exotoxin A, and cycloheximide. Proc. Natl. Acad. Sci. USA 77, 7267–7271 (1980)Google Scholar
  121. Shatkin, A.J.: Capping of eukaryotic mRNAs. Cell 9, 645–653 (1976)Google Scholar
  122. Shatkin, A.J., Darzynkiewicz, E., Furuichi, Y., Kroath, H., Morgan, M.A., Tahara, S.M., Yamakawa, M.: 5’-Terminal caps, cap-binding proteins, and eukaryotic mRNA function. Biochem. Soc. Symp. 47, 129–143 (1981)Google Scholar
  123. Shibata, H., Ro-Choi, T.S., Reddy, R., Choi, Y.C., Henning, D., Busch, H.: The primary nucleotide sequence of nuclear U-2 ribonucleic acid. J. Biol. Chem. 250, 3909–3920 (1975)Google Scholar
  124. Shimotohno, K., Kodama, Y., Hashimoto, J., Miura, K.: Importance of 5’-terminal blocking structure to stabilize mRNA in eukaryotic protein synthesis. Proc. Natl. Acad. Sci. USA 74, 2734–2738 (1977)Google Scholar
  125. Skup, D., Millward, S.: Reovirus-induced modification of cap-dependent translation in infected cells. Proc. Natl. Acad. Sci. USA 77, 152–156 (1980)Google Scholar
  126. Skup, D., Zarbl, H., Millward, S.: Regulation of translation in L-cells infected with reovirus. J. Mol. Biol. 151, 35–55 (1981)Google Scholar
  127. Smith, R.E., Clark, J.M.: Effect of capping upon the mRNA properties of satellite tobacco necrosis virus ribonucleic acid. Biochemistry 18, 1366–1371 (1979)Google Scholar
  128. Sonenberg, N.: ATP/Mg+++-dependent cross-linking of cap binding proteins to the 5’ end of eukaryotic mRNA. Nucleic Acids Res. 9, 1643–1656 (1981)Google Scholar
  129. Sonenberg, N., Shatkin, A.J.: Reovirus mRNA can be covalently crosslinked via the 5’-cap to proteins in initiation complexes. Proc. Natl. Acad. Sci. USA 74, 4288–4292 (1977)Google Scholar
  130. Sonenberg, N., Shatkin, A.J.: Nonspecific effect of m7GMP on protein-RNA interactions. J. Biol. Chem. 253, 6630–6632 (1978)Google Scholar
  131. Sonenberg, N., Trachsel, H.: Probing the function of the eukaryotic 5’-cap structure using monoclonal antibodies to cap-binding proteins. In: Current Topics in Cellular Regulation (eds. B.L. Horecker, E.R. Stadtman), Vol. XXI, pp. 65–88. London-New York: Academic Press 1982Google Scholar
  132. Sonenberg, N., Morgan, M.A., Merrick, W.C., Shatkin, A.J.: A polypeptide in eukaryotic initiation factors that crosslinks specifically to the 5’-terminal cap in mRNA. Proc. Natl. Acad. Sci. USA 75, 4843–4847 (1978)Google Scholar
  133. Sonenberg, N., Morgan, M.A., Testa, D., Colonno, R.J., Shatkin, A.J.: Interaction of a limited set of proteins with different mRNAs and protection of 5’-caps against pyrophosphatase digestion in initiation complexes. Nucleic Acdis Res. 7, 15–29 (1979a)Google Scholar
  134. Sonenberg, N., Rupprecht, K.M., Hecht, S.M., Shatkin, A.J.: Eukaryotic mRNA cap binding protein: Purification by affinity chromatography on Sepharose-coupled m7-GDP. Proc. Natl. Acad. Sci. USA 76, 4345–4349 (1979b)Google Scholar
  135. Sonenberg, N., Trachsel, H., Hecht, S., Shatkin, A.J.: Differential stimulation of capped mRNA translation in vitro by cap binding protein. Nature (London) 285, 331–333 (1980) Sonenberg, N., Guertin, D., Cleveland, D., Trachsel, H.: Probing the function of the eukaryotic 5’ cap structure by using a monoclonal antibody directed against cap-binding proteins. Cell 27, 563–572 (1981a)Google Scholar
  136. Sonenberg, N., Skup, D., Trachsel, H., Millward, S.: In vitro translation in reovirus and poliovirus-infected cell extracts. Effects of anti-cap binding protein monoclonal antibody. J. Biol. Chem. 256, 4138–4141 (1981b)Google Scholar
  137. Sonenberg, N., Guertin, D., Lee, K.A.W.: Capped mRNAs with reduced secondary structure can function in extracts from poliovirus-infected cells. Mol. Cell Biol. 2, 1633–1638 (1982)Google Scholar
  138. Sonenberg, N., Edery, I., Darveau, A., Humbelin, M., Trachsel, H., Hershey, J.W.B., Lee, K.A.W.: Functional and structural characteristics of eukaryotic mRNA cap binding protein complex. In: Protein Synthesis (eds. A.K. Abraham, T.S. Eikhorn, J.F. Pryme ). Clifton, N.Y.: The Human Press 1983Google Scholar
  139. Steeg, H. van, Grinsven, M. van, Mansfeld, F. van, Voorma, H.O., Benne, R.: Initiation of protein synthesis in neuroblastoma cells infected by Semliki Forest virus. A decreased requirement of late viral mRNA for eIF-4B and cap binding proteins. FEBS Lett. 129, 62–66 (1981a)Google Scholar
  140. Steeg, H. van, Thomas, A., Verbeek, S., Kasperaitis, M., Voorma, H.O., Benne, R.: Shutoff of neuroblastoma cell protein synthesis by Semliki Forest virus: Loss of ability of crude initiation factors to recognize early Semliki Forest virus and host mRNA’s. J. Virol. 38, 728–736 (1981b)Google Scholar
  141. Suzuki, H.: Effect of 7-methylguanosine-5’-phosphate on rabbit globin synthesis. FEBS Lett. 72, 309–313 (1976)Google Scholar
  142. Suzuki, H.: Effect of m7G5’ppp5’Nm on the rabbit globin synthesis. FEBS Lett. 79, 11–14 (1977)Google Scholar
  143. Tahara, S.M., Morgan, M.A., Shatkin, A.J.: Two forms of purified m7G-cap binding protein with different effects on capped mRNA translation in extracts of uninfected and poliovirus-infected HeLa cells. J. Biol. Chem. 256, 7691–7694 (1981)Google Scholar
  144. Tahara, S.M., Morgan, M.A., Grifo, J.A., Merrick, W.C., Shatkin, A.J.: Interactions of cap binding proteins with eukaryotic mRNAs. In: Interaction of Translational and Transcriptional Controls in the Regulation of Gene Expression (eds. M. Grunberg-Manago, B. Safer), Vol. XXIV, pp. 359–372. Amsterdam-New York: Elsevier Science Publishing Company 1982Google Scholar
  145. Tahara, S.M., Morgan, M.A., Shatkin, A.J.: Binding of inosine-substituted mRNA to reticulocyte ribosomes and eukaryotic initiation factors 4A and 4B requires ATP. J. Biol. Chem. 258, 11350–11353 (1983)Google Scholar
  146. Thomas, J.R., Wagner, R.R.: Inhibition of translation in lysates of mouse L cells infected with vesicular stomatitis virus: Presence of a defective ribosome-associated factor. Biochemistry 22, 1540–1464 (1983)Google Scholar
  147. Trachsel, H., Erni, B., Schreier, M.H., Staehelin, T.: Initiation of mammalian protein synthesis. II. The assembly of the initiation complex with purified initiation factors. J. Mol. Biol. 116, 755–767 (1977)Google Scholar
  148. Trachsel, H., Sonenberg, N., Shatkin, A.J., Rose, J.K., Leong, K., Bergmann, J.E., Gordon, J., Baltimore, D.: Purification of a factor that restores translation of vesicular stomatitis virus mRNA in extracts from poliovirus infected HeLa cells. Proc. Natl. Acad. Sci. USA 77, 770–774 (1980)Google Scholar
  149. Van Steeg, H., Kasperaitis, M., Voorma, H.O., Benne, R.: Infection of neuroblastoma cells by Semliki Forest virus. Eur. J. Biochem. 138, 473–478 (1984)Google Scholar
  150. Walden, W.E., Thach, R.E.: The role of mRNA competition in regulating translation in normal fibroblasts. In: Interaction of Translational and Transcriptional Controls in the Regulation of Gene Expression (eds. M. Grunberg-Manago, B. Safer), Vol. XXIV, pp. 399–416. Amsterdam-New York: Elsevier Science Publishing Company 1982Google Scholar
  151. Webb, N.R., Chari, R.V.J., Depillis, G., Kozarich, J.W., Rhoads, R.E.: Purification of the messenger RNA cap-binding protein using a new affinity medium. Biochemistry 23, 117–181 (1984)Google Scholar
  152. Weber, L.A., Feman, E.R., Hickey, E.D., Williams, M.C., Baglioni, C.: Inhibition of HeLa cell messenger RNA translation by 7-methylguanosine 5’-mono-phosphate. J. Biol. Chem. 251, 5657–5662 (1976)Google Scholar
  153. Weber, L.A., Hickey, E.D., Nuss, D.L., Baglioni, C.: 5’-Terminal 7-methylguanosine and mRNA functions: Influence of potassium concentration on translation in vitro. Proc. Natl. Acad. Sci. USA 74, 3254–3258 (1977)Google Scholar
  154. Weber, L.A., Hickey, E.D., Baglioni, C.: Influence of potassium salt concentrations and temperature on inhibition of mRNA translation by 7-methylguanosine 5’-monophosphate. J. Biol. Chem. 253, 178–183 (1978)Google Scholar
  155. Wei, C.-M., Moss, B.: Methylated nucleosides block 5’-terminus of vaccinia virus messenger RNA. Proc. Natl. Acad. Sci. USA 72, 318–322 (1975)Google Scholar
  156. Willems, M., Wieringa, B., Mulder, J., Ab, G., Gruber, M.: Translation of vitellogenin mRNA in the presence of 7-methylguanosine 5’-triphosphate. Cap analogs compete with mRNAs on the basis of affinity for initiation- complex formation. Eur. J. Biochem. 93, 469–479 (1979)Google Scholar
  157. Wu, J.M., Cheung, C.P., Suhadolnik, R.J.: Differential inhibition with partially purified and endogenous rabbit reticulocyte globin mRNA by 7-methylguanosine 5’-monophosphate. Biochem. Biophys. Res. Commun. 78, 1079–1086 (1977)Google Scholar
  158. Yamaguchi, K., Nakagawa, I., Sekine, M., Hata, T., Shimotohno, K., Hiruta, M., Miura, K.-I.: Chemical synthesis of the 5’-terminal part bearing cap structure of messenger RNA of cytoplasmic polyhedrosis virus (CPV): m7G5’ pppAmpG and m7G5’ pppAmpCpU. Nucleic Acids Res. 12, 2939–2954 (1984)Google Scholar
  159. Zan-Kowalczewska, M., Bretner, M., Sierakowska, H., Szcezsna, E., Filipowicz, W., Shatkin, A.J.: Removal of 5’-terminal m7G from eukaryotic mRNAs by potato nucleotide pyrophosphatase and its effect on translation. Nucleic Acids Res. 4, 3065–3081 (1977)Google Scholar
  160. Zarbl, H., Skup, D., Millward, S.: Reovirus progeny subviral particles synthesize uncapped mRNA. J. Virol. 34, 497–505 (1980)Google Scholar
  161. Zumbè, A., Stahli, C., Trachsel, H.: Association of a Mr 50,000 cap-binding protein with the cytoskeleton in baby hamster kidney cells. Proc. Natl. Acad. Sci. USA 79, 2927–2931 (1982)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • R. E. Rhoads

There are no affiliations available

Personalised recommendations