Field Fluctuations and Multiphoton Processes

  • Peter Zoller
Conference paper
Part of the Springer Series on Atoms+Plasmas book series (SSAOPP, volume 2)


The original motivation to formulate and solve theories which account for laser field fluctuation effects in multiphoton processes are our attempts to understand the large class of experiments performed with noisy lasers [1–16]. High power multimode lasers, for example, are known to exhibit strong amplitude fluctuations which must be taken into account in a qualitative as well as quantitative theoretical analysis of such experiments; even well stabilized single mode lasers, on the other hand, have some residual fluctuations of the phase and amplitude (one of the limitations of precision experiments) which must be understood and should be incorporated in a realistic theory.


Amplitude Fluctuation Field Fluctuation Continue Fraction Expansion Single Mode Laser Multiphoton Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    For a review and references to earlier papers see: 3. H. Eberly, in: “Laser Spectroscopy IV”, H. Walther and K. W. Rothe, eds., Springer, Berlin (1979), p. 80Google Scholar
  2. P. Zoller, in: “Laser Physics”, Proc. of the Second New Zealand Summer School in Laser Physics, D. F. Walls and J.D. Harvey, eds., Academic, New York (1980), p 99Google Scholar
  3. P. Lambropoulos and P. Zoller, Proc. of the Second International Conference on Multiphoton Processes, Budapest (1980), p. 193Google Scholar
  4. A.T. Georges and P. Lambropoulos, Adv. Elect. Electron Phys. 54, 191 (1980)Google Scholar
  5. P. Zoller, in: “Coherence and Quantum Optics V”, L. Mandel and E. Wolf, eds., Plenum Press, New York (1984)Google Scholar
  6. 2.
    S.N. Dixit, P. Zoller and P. Lambropoulos, Phys. Rev. A 21, 1289 (1980)ADSGoogle Scholar
  7. 2.
    P. Zoller, G. Alber and R. Salvador, Phys. Rev. A 24, 398 (1981) and references citedADSGoogle Scholar
  8. 3.
    A.T. Georges and S.N. Dixit, Phys. Rev. A 23, 2380 (1981)ADSGoogle Scholar
  9. 4.
    V.Yu Finkelshtein, Phys. Rev. A 27, 961 (1983)ADSGoogle Scholar
  10. 3.
    M. Helm and P. Zoller, Opt. Commun. 49, 324 (1984)ADSCrossRefGoogle Scholar
  11. 6.
    P. Zoller and J. Cooper, Phys. Rev. A 28, 2310 (1983)ADSGoogle Scholar
  12. 7.
    P. Zoller, J. Phys. B 15, 2911 (1982)ADSGoogle Scholar
  13. 7.
    M. Levenstein, P. Zoller and J. Mostowski, J. Phys. B 16 563 (1983 and references citedADSGoogle Scholar
  14. 8.
    J.J. Yeh and J.H. Eberly, Phys. Rev. A 24, 888 (1981)ADSGoogle Scholar
  15. 9.
    L.A. Lompre, G. Mainfray, C. Manus and J.P. Marinier, J. Phys. B. 14, 4307 (1981)ADSCrossRefGoogle Scholar
  16. 10.
    K. Rzazewski and J.H. Eberly, Phys. Rev. A 27, 2026 (1983)ADSGoogle Scholar
  17. 11.
    J. Dalton and P.L. Knight, J. Phys. B 15, 3997 (1982)ADSGoogle Scholar
  18. 12.
    G.S. Agarwal and C.V. Kunasz, Phys. Rev. A 27, 996 (1983)ADSGoogle Scholar
  19. 13.
    R. Danielle and G. Ferrante, J. Phys. B 14, L633 (1981)Google Scholar
  20. 14.
    D.E. Nitz, A.V. Smith, M.D. Levenson and S.J. Smith, Phys. Rev. A 24, 288 (1981)ADSGoogle Scholar
  21. 15.
    D.S. Elliot, R. Roy and S.J. Smith, Phys. Rev. A 26, 12 (1982)ADSGoogle Scholar
  22. 15.
    D.S. Elliot, M.W. Hamilton, K. Arnett and S.J. Smith, Phys. Rev. Lett. 53, 439 (1984); see also the contribution by D.S. Elliot in the present volumeADSCrossRefGoogle Scholar
  23. 16.
    L.D. Zusman and A.I. Burshtein, Sov. Phys. 3ETP 34, 320 (1972)Google Scholar
  24. 16.
    K. Wodkiewicz, B.W. Shore, J.H. Eberly, JOSA B 1, 398(1984)ADSGoogle Scholar
  25. 17.
    H. Risken, “The Fokker-Planck Equation: Methods of Solution and Applications”, in: Springer Serien in Synergetics, H. Haken, ed., Springer, Berlin (1984)Google Scholar
  26. 18.
    A. Schenzle and H. Brand, Phys. Rev. A 20, 1628 (1979)ADSGoogle Scholar
  27. S.N. Dixit and P.S. Sahny, Phys. Rev. Lett. 30, 1273 (1983)ADSCrossRefGoogle Scholar
  28. P. Jung and H. Risken, submitted to Phys. Rev. Lett. A; and references citedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1984

Authors and Affiliations

  • Peter Zoller
    • 1
  1. 1.Institute for Theoretical PhysicsUniversity of InnsbruckInnsbruckAustria

Personalised recommendations