Advertisement

Multiphoton Excitation of Doubly Excited States of Two-Electron Atoms

  • R. R. Freeman
  • L. A. Bloomfield
  • W. E. Cooke
  • J. Bokor
  • R. M. Jopson
Conference paper
Part of the Springer Series on Atoms+Plasmas book series (SSAOPP, volume 2)

Abstract

One of the outstanding problems in atomic physics is to better understand the dynamics of highly excited two-electron systems. In 1977, I.C. PERCIVAL [1] coined the term “planetary atoms” to describe these atoms in which both of the electrons are so highly excited that their mutual perturbations are large enough to introduce dramatic angular correlations in their motion. He introduced a semiclassical method-quantizing classical two-electron orbits-to predict some scaling laws. Others have attempted to solve this problem from a purely quntum mechanical approach. HERRICK and SINANOGLU [2] have employed group theory methods to classify energy levels for the He 3≬ 3≬’ Their approach was strongly suggestive that these atoms vibrated and rotated with the electrons localized on opposite sides of the nucleus-more like a “molecular atom”. FANO and others [3] have analyzed the problem using hyperspherical coordinates and found that, at least for the case of near threshold ionization, both electrons are highly correlated in angle as they move along a “Wannier ridge”, a local maximum in the potential energy surface.

Keywords

Intermediate State Rydberg State Barium Atom Rydberg Electron Multiphoton Excitation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. C. Percival: Proc. R. Soc. Lond. A 353, 289 (1977).ADSGoogle Scholar
  2. 2.
    D. R. Herrick and O. Sinanoglu: Phys. Rev. A 11, 97 (1975).ADSGoogle Scholar
  3. 3.
    U. Fano: Rep. Prog. Phys. 46, 97 (1983)ADSCrossRefGoogle Scholar
  4. 3.
    G. Hose and H. Taylor: Phys. Rev. Lett. 51, 947 (1983).MathSciNetADSCrossRefGoogle Scholar
  5. 4.
    R. P. Madden and K. Codling: Astrophys. J. 141, 364 (1965)ADSCrossRefGoogle Scholar
  6. 4.
    P. R. Woodruff and J. A. R. Samson: Phys. Rev. Lett. 45, 110 (1980).ADSCrossRefGoogle Scholar
  7. 5.
    S. J. Buckman, P. Hammond, F. H. Read, and G. C. King: J. Phys. B 16, 4039 (1983).ADSGoogle Scholar
  8. 6.
    W. E. Cooke and T. F. Gallagher: Phys. Rev. Lett. 41, 1648 (1978).ADSCrossRefGoogle Scholar
  9. 7.
    R. M. Jopson, R. R. Freeman W. E. Cooke and J. Bokor: Phys. Rev. Lett. 51, 1640 (1983).ADSCrossRefGoogle Scholar
  10. 8.
    J. R. Rubbmark, S. A. Borgstrom, and K. Bockasten: J. Phys. B 10, 421 (1977).ADSGoogle Scholar
  11. 9.
    J. E. Bjorkholm and P. F. Liao: Phys. Rev. Lett. 33, 128 (1974).ADSCrossRefGoogle Scholar
  12. 10.
    S. A. Bhatti, C. L. Cromer and W. E. Cooke: Phys. Rev. A 24, 161 (1981).ADSGoogle Scholar
  13. 11.
    C. Cromer, PhD Thesis, Dept. of Physics, USC (unpublished); W. E. Cooke, unpublished.Google Scholar
  14. 12.
    L. A. Bloomfield, R. R. Freeman, W. E. Cooke and J. Bokor: submitted to Phys. Rev. Lett. (Aug 1984).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1984

Authors and Affiliations

  • R. R. Freeman
    • 1
  • L. A. Bloomfield
    • 1
  • W. E. Cooke
    • 2
  • J. Bokor
    • 3
  • R. M. Jopson
    • 3
  1. 1.AT & T Bell LabsMurray HillUSA
  2. 2.Physics DepartmentUniversity of Southern CaliforniaLos AngelesUSA
  3. 3.AT & T Bell LabsHolmdelUSA

Personalised recommendations