Experimental Investigation of the Possibilities of the Optical Tunnelling of Electron from a Metal Surface Induced by Strong C02 Laser Pulses

  • Gy. Farkas
  • S. L. Chin
Conference paper
Part of the Springer Series on Atoms+Plasmas book series (SSAOPP, volume 2)


According to the fundamental laws of the intense field QED, the general processes governing the laser-induced electron emission from atoms or solids “traditionally” may be interpreted as two complementary limiting interaction processes of the same phenomenon. The first is the “multiphoton” type process, when the electron interacts only with several well determined small number of photons (quantum limit), the second is the “tunnelling” type, when the number of the interacting photons is increasingly high (classical limit). While practically all research activity was concentrated both theoretically and experimentally to the “multiphoton” questions, less attention was paid to the “tunnelling” case, in spite of the fact that the early beginning of the intense field QED started with the pronunciation of this latter.


Laser Pulse Pulse Train Multiphoton Process Laser Train Dynamic Tunnelling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gy. Farkas, in Multiphoton Processes, Eds. J.H. Eberly and P. Lambropoulos (Wiley, New York, 1978) pp. 81–100Google Scholar
  2. 2.
    F.V. Bunkin, A.M. Prokhorov, Sov. Phys. JETP, 22, 844 (1964)ADSGoogle Scholar
  3. 3.
    L.V. Keldysh, Sov. Phys. JETP, 1307 (1965)Google Scholar
  4. 4.
    S. Geltman, M.R. Teague, J. Phys. B 7, L22 (1974)ADSGoogle Scholar
  5. 5.
    J.I. Gersten, M.H. Mittleraan, Phys. Rev. A 10, 74 (1974)ADSGoogle Scholar
  6. 6.
    G.J. Pert, J. Phys. B 8, L173 (1975)ADSGoogle Scholar
  7. 7.
    P. Kostic, M.H. Mittleman, Phys. Rev. A 25, 1568 (1982)ADSGoogle Scholar
  8. 9.
    D.M. Volkov, Z. für Phys. 94, 250 (1935)ADSzbMATHCrossRefGoogle Scholar
  9. 10.
    J. Lin, T.F. George, J. Appl. Phys. 54, 382 (1983)ADSCrossRefGoogle Scholar
  10. 11.
    N. Bloembergen, Rev. Mod. Phys. 54, 685 (1982)ADSCrossRefGoogle Scholar
  11. 12.
    S.I. Anisimov, N.A. Inogamov, Yu.V. Petrov, Phys. Lett. 55A, 449 (1976)ADSGoogle Scholar
  12. 13.
    N.M. Kroll, K.M. Watson, Phys. Rev. A 8, 809 (1973)ADSGoogle Scholar
  13. 14.
    N.B. Delone, N.L. Manakov, A.G. Fainshtein, ZhETF 86, 906 (1984)Google Scholar
  14. 15.
    P. Lambroponlos, in Advances in Atomic and Molecular Physics, Vol. 12, (Academic, New York, 1976) pp. 87–142Google Scholar
  15. 16.
    G. Mainfray, in Electronic and Atomic Collisions, Ed. G. Watel (North-Holland, Amsterdam, 1978) pp. 699–712Google Scholar
  16. 17.
    J. Black. E. Yablonovitch, IEEE J. Quant. Elect. OE13, 117 (1977)ADSCrossRefGoogle Scholar
  17. 18.
    J. Bayfield, L. Gardner, P. Koch, Phys. Rev. Lett. 39, 76 (1977)ADSCrossRefGoogle Scholar
  18. 19.
    B. W. Boreham, “Europhysics Study Conference on Multiphoton Processes, Bénodet, France, June 18–22, 1979 (Private communication)Google Scholar
  19. 20.
    L-A. Lompré, G. Mainfray, C. Manus, C. Repoux, J. Thébault, Phys. Rev. Lett. 36, 949 (1976)ADSCrossRefGoogle Scholar
  20. 21.
    S.L. Chin, Gy. Farkas, F. Yergeau, J. Phys. B 16, L 223 (1983)ADSGoogle Scholar
  21. 22.
    K. Mitchell, Proc. Roy. Soc, 146 A, 442 (1934)ADSGoogle Scholar
  22. 23.
    F.V. Bunkin, M.V. Fedorov, Sov. Phys. JETP 21, 896 (1965)ADSGoogle Scholar
  23. 24.
    A.P. Silin, Sov, Phys. Solid State 12, 2886 (1971)Google Scholar
  24. 25.
    A.M. Brodsky, phys. stat. sol. (b) 83, 331 (1977)ADSCrossRefGoogle Scholar
  25. 26.
    Gy. Farkas, Z.Gy. Horváth, Opt. Comm. 12, 392 (1974)ADSCrossRefGoogle Scholar
  26. 27.
    L-A. Lompré, J. Thébault, Gy. Farkas, Appl. Phys. Lett. 27, 110 (1975)ADSCrossRefGoogle Scholar
  27. 28.
    R. Yen, J. Liu, N. Bloembergen, Opt. Comm. 35, 277 (1980)ADSCrossRefGoogle Scholar
  28. 29.
    J. H. Bechtel, W. L. Schmidt, N. Bloembergen, Opt. Comm. 12, 392 (1975)Google Scholar
  29. 30.
    R. Yen, P. Liu, M. Dagenais, N. Bloembergen, Opt. Comm. 31, 334 (1979)ADSCrossRefGoogle Scholar
  30. 31.
    F. F. Könnendi, J. Phys. E 7, 1004 (1974)Google Scholar
  31. 32.
    J. Bergou, Gy. Farkas, Z. Gy. Horváth, Acta. Phys. Acad. Sc. Hung. 32, 319 (1972)CrossRefGoogle Scholar
  32. 33.
    Gy. Farkas, S.L. Chin, P. Galarneau, F. Yergeau, Opt. Comm. 48, 275 (1983)ADSCrossRefGoogle Scholar
  33. 34.
    S.M. Bedair, H.P. Schmidt, J. Appl. Phys. 40, 4776 (1969)ADSCrossRefGoogle Scholar
  34. 35.
    L-A. Lompré, G. Mainfray, C. Manus, J. Thébault, Gy. Farkas, Z. Gy. Horváth, Appl. Phys. Lett. 33, 124 (1978)ADSCrossRefGoogle Scholar
  35. 36.
    Gy. Farkas, S.L. Chin, to be published.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1984

Authors and Affiliations

  • Gy. Farkas
    • 1
  • S. L. Chin
    • 2
  1. 1.Central Research Institute of PhysicsBudapest, 114Hungary
  2. 2.Laboratoire de Recherce en Optique et Laser,Département de Physique Faculté des Sciences et de GénieUniversité LavalQuebecCanada

Personalised recommendations