A Physical Explanation of Quasiperiodic Motion and the Onset of Chaos in Nonlinear Systems

  • Howard S. Taylor
Conference paper
Part of the Springer Series on Atoms+Plasmas book series (SSAOPP, volume 2)


The reader may have noticed that the subject broadly called classical and quantum nonlinear dynamics has lately gained considerable attention in many fields of physics and chemistry [1–4]. Of particular interest is the dynamics of systems of many oscillators coupled by nonlinear interactions. Such systems are used to model widely spread phenomena, for example, molecular vibrations, intra-molecular energy transfer, unimolecular reaction, and laser-matter interactions. In the latter case, the laser is viewed, using the classical idea of extended phase space, or quantum field theory, as an oscillator. Hence, multiphoton excitations of atomic, molecular and plasma systems are described using oscillators coupled in a nonlinear manner. In a completely different area we find the motion of galaxies is also modeled by nonlinear oscillators [5]. Recently the physics of light traveling in fibers (fiber optics) has been shown to obey similar equations. Atomic and molecular physics is far from left out. The nature of electronic excited states (e.g. doubly excited Rydberg states) and the whole question of the ability to assign quantum numbers to states and to corresponding spectra involves nonlinear ideas. The unusual behavior of electronic states in strong external fields is essentially governed by nonlinear equations.


Adiabatic State Rectangular Region Kepler Problem Regular State Regular Motion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D.W. Noid, M.L. Koszykowski & R.A. Marcus, Ann, Rev. Phys. Chem. 32, 267 (1981)ADSCrossRefGoogle Scholar
  2. 2.
    G. Hose, H. Taylor & Y. Y. Bai, J. Chem. Phys. 80, 4363 (1984)ADSCrossRefGoogle Scholar
  3. 3.
    S. Rice, Adv. Chem. Phys. 47, 117 (1981)CrossRefGoogle Scholar
  4. 4.
    G. Hose & H. Taylor, J. Chem. Phys. 76, 5356 (1982)MathSciNetADSCrossRefGoogle Scholar
  5. 5.
    M. Henon & C. Heiles, Astron. J., 69, 73 (1973)MathSciNetADSCrossRefGoogle Scholar
  6. 6.
    J. Lebowitz & ). Penrose, Phys. Today, Feb. 23 (1973)Google Scholar
  7. 7.
    G. Casati, J. Ford & F. Vivaldi, Phys. Rev. Lett. 52, 1861 (1973)ADSCrossRefGoogle Scholar
  8. 8.
    Y.Y. Bai, G. Hose, W. McCurdy & H. Taylor, Chem. Phys. Lett. 99, 342 (1983)ADSCrossRefGoogle Scholar
  9. 9.
    R. Wyatt, G. Hose & H. Taylor, Phys. Rev. A 28, 815 (1983)ADSGoogle Scholar
  10. 10.
    M. Shapiro & M. Child, J. Chem. Phys. 76, 6176 (1982)ADSCrossRefGoogle Scholar
  11. 11.
    A.N. Kolmogorov, Dokl. Akad. Nauk. USSR 98, 527 (1954)MathSciNetzbMATHGoogle Scholar
  12. 12.
    V.I. Arnold, Usp. Mat. Nauk. 18, 13 (1963)Google Scholar
  13. 13.
    J. Moser, Nach. Akad. Wiss. Gottingen 1, 1 (1962)Google Scholar
  14. 14.
    G. Hose & H. Taylor, Phys. Rev. Lett. 51, 947 (1983)MathSciNetADSCrossRefGoogle Scholar
  15. 15.
    K. Stefanski & H. Taylor, Phys. Rev. A (submitted)Google Scholar
  16. 16.
    S. W. McDonald & A. N. Kaufman, Phys. Rev. Lett. 42, 1189 (1979)ADSCrossRefGoogle Scholar
  17. 17.
    M.V. Berry, J. Phys. A 10, 2083 (1977)ADSGoogle Scholar
  18. 18.
    G.M. Zaslavsky, Zh. Eksp. Theor. Fiz. 73, 2089 (1977)Google Scholar
  19. 19.
    M. Shapiro, R.D. Taylor & P. Brumer, Chem. Phys. Lett. 106, 325 (1984)ADSCrossRefGoogle Scholar
  20. 20.
    R.D. Taylor & P. Brumer, Faraday Dis. 75, 117 (1983)CrossRefGoogle Scholar
  21. 21.
    S.W. McDonald, Ph.D. thesis (1983)Google Scholar
  22. 22.
    G. Hose & H. Taylor, Chem. Phys. 84, 375 (1984)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1984

Authors and Affiliations

  • Howard S. Taylor
    • 1
  1. 1.Department of ChemistryUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations