Advertisement

Variety of Evolutions to Stationary Periodical Structures

  • Andrzej Lech Kawczyński
Conference paper
Part of the Springer Series in Synergetics book series (SSSYN, volume 27)

Abstract

The system (1) with S-shaped f(u,v) =0 and bifurcations from one stationary state to trigger, and from trigger to another stationary state (in the subsystem u,v) induced by φ(p)
$$\begin{array}{l} {u_{t}} - {D_{u}}{u_{{XX}}} = {\varepsilon _{1}}f\left( {u,v} \right) \\ {v_{t}} - {D_{v}}{v_{{XX}}} = {\varepsilon _{2}}\left( {g\left( {u,v} \right) + \varphi \left( p \right)} \right) \\ {p_{t}} - {D_{p}}{p_{{XX}}} = {\varepsilon _{3}}\left( {\alpha u - \beta p} \right)\quad {\varepsilon _{1}} \gg {\varepsilon _{3}} \gg {\varepsilon _{2}} \\ \end{array}$$
(1)
gives different types of evolutions to stationary periodical structures for proper initial conditions and values of parameters.

References

  1. 1.
    A.L. Kawczyński, A.N. Zaikin: J.Non-Equilib.Thermodyn. 2, 139 (1977)ADSCrossRefGoogle Scholar
  2. 2.
    A.L. Kawczyński, J. Górski: Pol.J.Chem. 57, (1983)Google Scholar
  3. 3.
    J. Górski, A.L. Kawczyński: Pol.J.Chem. to appearGoogle Scholar
  4. 4.
    J. Górski, A.L. Kawczyński: Pol.J.Chem. to appearGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1984

Authors and Affiliations

  • Andrzej Lech Kawczyński
    • 1
  1. 1.Institute of Physical ChemistryPolish Academy of SciencesWarsawPoland

Personalised recommendations