Skip to main content

Part of the book series: Springer Series in Synergetics ((SSSYN,volume 27))

Abstract

In this paper I will deal with the effect of external random perturbations, “noise”, on chemical systems and other open nonlinear systems. As a concrete example let us consider a CSTR. This is an open system and as such subject to external constraints, namely the concentrations of the chemical species in the feed streams, the flow rate, the stirring rate, the temperature, and the incident light intensity in the case of a photochemical reaction. These external constraints characterize the state of the environment of the open system and will, in general, fluctuate more or less strongly. Such environmental fluctuations are particularly important for natural systems; here random fluctuations are always present and their amplitude is not necessarily small as in laboratory systems. In the latter systems the experimenter will of course try to minimize the effect of random perturbations, though it is impossible to eliminate noise completely. Clearly, random external noise is ubiquitous in open systems, but this fact by itself would hardly warrant a systematic study of the effects of external fluctuations. The question is whether noise is more than a mere nuisance we have to live with. Is there any hope of finding interesting physics? The intuitive, and wrong, answer would be negative: The system averages out rapid fluctuations and the only trace of external noise would be a certain fuzziness in the state of the system. Of course, if the state of the system becomes unstable, the fluctuations initiate the departure from the unstable state. Then the dynamics of the system take over and the system evolves to a new stable state.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P.I. Kuznetsov, R.L. Stratonovic, V.I. Thikhonov: “The Effect of Electrical Fluctuations on a Valve Oscillator”, in Nonlinear Transformations of Stochastic Processes, ed. by P.I. Kuznetsov, R.L. Stratonovic, V.I. Thikhonov (Perga-mon, Oxford 1965) p. 223

    Google Scholar 

  2. R.M. May: Stability and Complexity in Model Ecosystems (University Press, Princeton, NJ 1973)

    Google Scholar 

  3. H.S. Hahn, A. Nitzan, P. Ortoleva, J. Ross: Proc. Natl. Acad. Sci. USA 71, 4067 (1974)

    Article  ADS  Google Scholar 

  4. L. Arnold, W. Horsthemke, R. Lefever: Z. Phys. B29, 367 (1978)

    ADS  Google Scholar 

  5. W. Horsthemke, R. Lefever: Noise-Induced Transitions. Theory and Applications in Physics, Chemistry, and Biology. Springer Series in Synergetics 15 (Springer, Berlin 1984)

    MATH  Google Scholar 

  6. J.L. Doob: Ann. Math. 43, 351 (1942)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. G. Blankenship, G.C. Papanicolaou: SIAM J. Appl. Math. 34, 437 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  8. W. Horsthemke, R. Lefever: Z. Phys. B40, 241 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  9. H. Haken: Synergetics. An Introduction. 2nd ed. (Springer, Berlin 1977)

    MATH  Google Scholar 

  10. G. Nicolis, I. Prigogine: Self-Organization in Nonequilibrium Systems (Wiley, New York 1977)

    MATH  Google Scholar 

  11. Yu.V. Prohorov, Yu.A. Rozanov: Probability Theory (Springer, Berlin 1969)

    Google Scholar 

  12. A.R. Bulsara, W.C. Schieve, R.F. Gragg: Phys. Lett. A68, 294 (1978)

    ADS  Google Scholar 

  13. J. de la Rubia, M.G. Velarde: Phys. Lett. A69, 304 (1978)

    ADS  Google Scholar 

  14. H. Brand, A. Schenzle: J. Phys. Soc. Jpn. 48, 1382 (1980)

    Article  ADS  Google Scholar 

  15. M. San Miguel, J.M. Sancho: Z. Phys. B43, 361 (1981)

    Article  ADS  Google Scholar 

  16. W. Horsthemke, C.R. Doering, R. Lefever, A.S. Chi: Phys. Rev. A (to appear)

    Google Scholar 

  17. F. Moss, G.V. Weiland: Phys. Rev. A25, 3389 (1982)

    ADS  Google Scholar 

  18. R. Graham, M. Höhnerbach, A. Schenzle: Phys. Rev. Lett. 48, 1396 (1982)

    Article  ADS  Google Scholar 

  19. S.N. Dixit, P.S. Sahni: Phys. Rev. Lett. 50, 1273 (1983)

    Article  ADS  Google Scholar 

  20. R. Lefever, W. Horsthemke: Proc. Natl. Acad. Sci. USA 76, 2490 (1979)

    Article  ADS  Google Scholar 

  21. K.A. Wiesenfeld, E. Knobloch: Phys. Rev. A26, 2946 (1982)

    MathSciNet  ADS  Google Scholar 

  22. W. Ebeling, H. Engel-Herbert: Physica 104A, 378 (1980)

    MathSciNet  ADS  Google Scholar 

  23. C. van den Broeck: J. Stat. Phys. 31, 467 (1983)

    Article  ADS  MATH  Google Scholar 

  24. J.M. Sancho, M. San Miguel: Z. Phys. B36, 357 (1980)

    MathSciNet  ADS  Google Scholar 

  25. K. Lindenberg, B.J. West: Physica 119A, 485 (1983)

    MathSciNet  ADS  Google Scholar 

  26. K. Kitahara, W. Horsthemke, R. Lefever: Phys. Lett. A70, 377 (1979)

    MathSciNet  ADS  Google Scholar 

  27. K. Kitahara, W. Horsthemke, R. Lefever, Y. Inaba: Prog. Theor. Phys. 64, 1233 (1980)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. A. Schenzle, H. Brand: Phys. Rev. A20, 1628 (1979)

    ADS  Google Scholar 

  29. M. Suzuki, K. Kaneko, F. Sasagawa: Prog. Theor. Phys. 65, 828 (1981)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. J.M. Sancho, M. San Miguel, S.L. Katz, J.D. Gunton: Phys. Rev. A26, 1589 (1982);

    ADS  Google Scholar 

  31. J.M. Sancho, M. San Miguel, H. Yamazaki, T. Kawakubo: Physica 116A, 560 (1982)

    ADS  Google Scholar 

  32. P. Hänggi, P. Riseborough: Phys. Rev. A27, 3379 (1983);

    ADS  Google Scholar 

  33. P. Talkner, P. Hänggi: Phys. Rev. A29, 768 (1984)

    ADS  Google Scholar 

  34. E. Ben-Jacob, D.J. Bergman, B.J. Matkowsky, Z. Schuss: Phys. Rev. A26, 2805 (1982)

    ADS  Google Scholar 

  35. E. Cortes, K. Lindenberg: Physica 123A, 99 (1984)

    MathSciNet  ADS  Google Scholar 

  36. R. Graham: Phys. Rev. A25, 3234 (1982)

    ADS  Google Scholar 

  37. R. Lefever, J.W. Turner: in Fluctuations and Sensitivity in Nonequilibrium Systems, ed. by W. Horsthemke and D.K. Kondepudi, Springer Proceedings in Physics 1 (Springer, Berlin 1984)

    Google Scholar 

  38. E. Knobloch, K.A. Wiesenfeld: J. Stat. Phys. 33, 611 (1983)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  39. F.J. de la Rubia, J. Garcia Sanz, M.G. Verlarde: in Nonlinear Stochastic Problems, ed. by R. Bucy, J.M.F. Moura (Reidel, Dordrecht 1983)

    Google Scholar 

  40. K.H. Hoffmann: Z. Phys. B49, 245 (1982)

    Article  ADS  Google Scholar 

  41. M. San Miguel, J.M. Sancho: Phys. Lett. 90A, 455 (1982); M.A. Rodriguez, L. Pesquera, M. San Miguel, J.M. Sancho: preprint 1984

    MathSciNet  ADS  Google Scholar 

  42. W. Horsthemke, R. Lefever: Phys. Lett. A (submitted)

    Google Scholar 

  43. L. Hannon: in Fluctuations and Sensitivity in Noneguilibrium Systems, ed. by W. Horsthemke and D.K. Kondepudi, Springer Proceedings in Physics 1 (Springer, Berlin 1984)

    Google Scholar 

  44. W. Horsthemke, L. Hannon: J. Chem. Phys. (in press); see also this volume

    Google Scholar 

  45. A.S. Mikhailov, L. Schimansky-Geier, W. Ebeling: Phys. Lett. 96A, 453 (1983)

    MathSciNet  ADS  Google Scholar 

  46. A.S. Mikhailov: Phys. Lett. 73A, 143 (1979);

    ADS  Google Scholar 

  47. A.S. Mikhailov: Z. Phys. B41, 277 (1981);

    Article  ADS  Google Scholar 

  48. A.S. Mikhailov, I.V. Uporov: Sov. Phys. JETP 52, 989 (1980)

    ADS  Google Scholar 

  49. K. Lindenberg, V. Seshadri, B.J. West: Phys. Rev. A22, 2171 (1980)

    MathSciNet  ADS  Google Scholar 

  50. C.R. Doering, W. Horsthemke: J. Stat. Phys. (Feb. 1985)

    Google Scholar 

  51. For a review, see: J.P. Eckmann: Rev. Mod. Phys. 53, 643 (1981)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  52. S. Kabashima, T. Kawakubo: Phys. Lett. 70A, 375 (1979);

    ADS  Google Scholar 

  53. S. Kabashima, S. Kogure, T. Kawakubo, T. Okada: J. Appl. Phys. 50, 6296 (1979)

    Article  ADS  Google Scholar 

  54. P. DeKepper, W. Horsthemke: C. R. Acad. Sci. Paris C287, 251 (1978)

    Google Scholar 

  55. J.C. Micheau, W. Horsthemke, R. Lefever: J. Chem. Phys. (Sept. 1984)

    Google Scholar 

  56. S. Kai, T. Kai, M. Takata, K. Hirakawa: J. Phys. Soc. Jpn. 47, 1379 (1979)

    Article  ADS  Google Scholar 

  57. T. Kawakubo, A. Yanagita, S. Kabashima: J. Phys. Soc. Jpn. 50, 1451 (1981)

    Article  ADS  Google Scholar 

  58. H.R. Brand, S. Kai, S. Wakabayashi: preprint 1984

    Google Scholar 

  59. K. Kaminishi, R. Roy, R. Short, L. Mandel: Phys. Rev. A24, 370 (1981)

    ADS  Google Scholar 

  60. J. Smythe, F. Moss, P.V.E. McClintock: Phys. Rev. Lett. 51, 1062 (1983)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Horsthemke, W. (1984). Noise Induced Transitions. In: Vidal, C., Pacault, A. (eds) Non-Equilibrium Dynamics in Chemical Systems. Springer Series in Synergetics, vol 27. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70196-2_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70196-2_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-70198-6

  • Online ISBN: 978-3-642-70196-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics