Let ∆2 be the set of two-dimensional complete probability distributions given by
$$ {{\Delta }_{2}} = \left\{ {\left( {{\text{p}},1 - {\text{p}}} \right):\;0 \leqslant {\text{p}} \leqslant 1} \right\} $$




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Behara, M.: Additive and Nonadditive Measures of Entropy with Applications. J.Wiley, New York (to appear).Google Scholar
  2. [2]
    Behara, M. and Chorneyko, I.Z.: Trogonometric Entropies (submitted for publication).Google Scholar
  3. [3]
    Behara, M., Kofler, E. and Menges, G.: Entropy and informativity in decision situations under partial information. Statistische Hefte, Vol. 19 (1978), p. 124–130.CrossRefGoogle Scholar
  4. [4]
    Behara, M. and Nath, P.: Additive and non-additive entropies of finite measurable partitions. Lecture Notes in Mathematics, Springer-Ver1ag, Vol. 296 (1973), p. 216–223.Google Scholar
  5. [5]
    Behara, M. and Nath, P.: Information and entropy of countable measurable partitions. — I, Kybernetika, Vol. X (1974), p. 145–154.Google Scholar
  6. [6]
    Guiasu, S.: Information Theory with Applications, McGraw-Hill, New York, 1977.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • M. Behara

There are no affiliations available

Personalised recommendations