Zellkinetik

  • H. O. Klein
Part of the Handbuch der inneren Medizin book series (INNEREN, volume 4 / 4 / A)

Zusammenfassung

Bronchialkarzinome weisen in der westlichen Welt eine ständige Zunahme auf und gehören mit zu den bösartigsten Tumoren. Eine wirkungsvolle Behandlung mit Strahlen- und zytostatischer Chemotherapie ist, mit Ausnahme des kleinzelligen Bronchialkarzinoms, nur in seltenen Fällen bei den nicht-kleinzelligen Karzinomen des Bronchus möglich. Obwohl das Bronchialkarzinom häufig vorkommt, sind Kenntnisse über biologische Charakteristika, u.a. der Zellkinetik, dieser Tumoren sehr spärlich. Dies ist erstaunlich, da die Methoden zur Analyse der Proliferationskinetik vielfältig und seit langem bekannt sind. Bessere Kenntnisse über das Wachstumsverhalten des Bronchialkarzinoms könnten für zukünftige Behandlungskonzepte von Bedeutung sein.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Baisch H, Beck HP, Christensen IJ, Hartmann NR, Fried J, Dean PN, Gray JW, Jett JH, Johnson DA, White RA, Nicolini C, Zeitz S, Watson JV (1982) A comparison of mathematical methods for the analysis of DNA histograms obtained by flow cytometry. Cell Tissue Kinet 15: 235–249PubMedGoogle Scholar
  2. Bastert GB, Fortmeyer HP, Schmidt-Matthiesen H (eds) (1981) Thymusaplastic Nude Mice and Rats. In: Clinical Oncology, Fischer, Stuttgart New YorkGoogle Scholar
  3. Bates HR (1979) Morphological Variation in oat-cell carcinoma. Lancet 1: 1413PubMedCrossRefGoogle Scholar
  4. Beck HP (1980) Evaluation of flow cytometric data of human tumours. Correction procedures for background and cell aggregation. Cell Tissue Kinet 13: 173–181PubMedGoogle Scholar
  5. Böhm N, Sandritter W (1975) DNA in human tumours: a cytophotometric study. Curr Top Pathol 60: 151–219PubMedGoogle Scholar
  6. Braunschweiger PG, Poulakos L, Schiffer LM (1976) In vitro labelling and gold activation autoradiography for determination of labeling index and DNA synthesis times of solid tumors. Cancer Res 36: 1748–1753PubMedGoogle Scholar
  7. Brenner MW, Holsti LR, Pertalla Y (1967) The study by graphical analysis of the growth of human tumors and metastases of the lung. Br J Cancer 22: 1–13CrossRefGoogle Scholar
  8. Breur K (1966) Growth rate and radiosensitivity of human tumors. I. Growth rate of human tumors. Eur J Cancer 2: 157–171PubMedCrossRefGoogle Scholar
  9. Brigham BA, Bunn PA, Minna JD, Cohen MH, Ihde DC, Shockney StA (1978) Growth rates of small cell bronchogenic carcinomas. Cancer 42: 2880–2886PubMedCrossRefGoogle Scholar
  10. Chahinian P (1972) Relationship between tumor doubling time and anatomical features in 50 measurable pulmonary cancers. Chest 61: 340–345PubMedCrossRefGoogle Scholar
  11. Chavaudra N, Malaise EP (1979) In vitro incorporation of H3-TdR in human and murine solid tumors. Influence of 5-fluorouracil and/or hyperbaric oxygen on spatial distribution of labelling. Cell Tissue Kinet 12: 597–604PubMedGoogle Scholar
  12. Collins VP, Loeffler RK, Tivey H (1956) Observations on growth rates of human tumors. Am J Roentgenol 76: 988–1000Google Scholar
  13. Dilla MA van, Trujillo TT, Mullaney PF, Coulter JR (1969) Cell microfluorometry: a method for rapid fluorescence measurement. Science 163: 1213–1214PubMedCrossRefGoogle Scholar
  14. Dittrich W, Göhde E (1969) Impulsfluorometrie bei Einzelzellen in Suspension. Z Naturforsch 246: 360–361Google Scholar
  15. Fischer HA, Werner G (1971) Autoradiographie. De Gruyter, BerlinGoogle Scholar
  16. Garland LH, Coulson W, Wollin E (1963) The rate of growth and apparent duration of untreated primary bronchial carcinoma. Cancer 16: 694–707PubMedCrossRefGoogle Scholar
  17. Göhde W, Dittrich W (1971) Impulsfluorometrie - ein neuartiges Durchflußverfahren zur ultraschnellen Mengenbestimmung von Zellinhaltsstoffen. Acta Histochem [Suppl] (Jena) 10: 429–437Google Scholar
  18. Gunduz N (1981) Cytokinetics of Tumour and Endothelial Cells and Vascularization of Lung Metastases in C3H/He Mice. Cell Tissue Kinet 14: 343–363PubMedGoogle Scholar
  19. Gurland J, Johnson RO (1966) Case for using only maximum diameter in measuring tumors. Cancer Chemother Rep 50: 119–124PubMedGoogle Scholar
  20. Hamburger AW, Salmon SE (1977) Primary bioassay of human tumor stem cells. Science 197: 461–463PubMedCrossRefGoogle Scholar
  21. Helpap B, Maurer W (1967) H3-Thymidin-Einbau unter in vivo- und in vitro-Bedingungen an Geweben von Maus und Ratte. Naturwissenschaft 54: 520CrossRefGoogle Scholar
  22. Hilscher W, Maurer W (1962) Autoradiographische Bestimmung der Dauer der DNS-Verdopplung und ihres zeitlichen Verlaufs bei Spermatogonien der Ratte durch Doppelmarkierung mit C14- und H3-Thymidin. Naturwissenschaften 49: 352–354CrossRefGoogle Scholar
  23. Hirst DG, Denekamp J (1979) Tumor cell proliferation in relation to the vasculature. Cell Tissue Kinet 12: 31–42PubMedGoogle Scholar
  24. Hoff DD von, Weisenthal LM, Ihde DC, Mathews MJ, Layard M, Makuch R (1981) Growth of lung cancer colonies from bronchoscopy washings. Cancer 48: 400–403CrossRefGoogle Scholar
  25. Howard A, Pelc SR (1953) Synthesis of desoxyribonucleic acid in normal and irradiated cells and its relation to chromosome breakage. Heredity [Suppl] (Edinburg) 6: 261–273Google Scholar
  26. Isaacson JH, Cattanach BM (1962) Report. Mouse News letter 27: 31Google Scholar
  27. Jacob HE, Braunschweiger PG, Stragand JJ, Novak J, Schiffer LM (1978) Cell kinetics of large cell lung tumors and protocol design. Proc Am Assoc Cancer Res and ASCO 19: 397Google Scholar
  28. Jett JH, Gurley LR (1981) An improved sum-of-normal technique for cell cycle distribution analysis of flow cytometric DNA histograms. Cell Tissue Kinet 14: 413–423PubMedGoogle Scholar
  29. Johnson HA, Bond VP (1961) A method of labeling tissues with tritiated thymidine in vitro and its use in comparing rates of cell proliferation in duct epithelium, fibroadenoma and carcinoma of human breast. Cancer 14: 639–643PubMedCrossRefGoogle Scholar
  30. Kamentsky LA (1971) New instruments for rapid photometric analysis of cells. Discourse, 4th Intern Congress of Cytology, London Klein HO, Lennartz KJ (1974) Chemotherapy after synchronization of tumor cells. Semin Hematol 11: 203–227Google Scholar
  31. Klein HO, Lennartz KJ, Eder M, Gross R (1970) In-vitro-Verfahren zur autoradiographischen Be-stimmung der Zellkinetik der Erythroblasten bei Tier und Mensch. Histochemie 21: 369–382PubMedCrossRefGoogle Scholar
  32. Klein HO, Gross R, Lennartz KJ (1971) Untersuchungen zur Proliferationskinetik und Synchronisation menschlicher Tumorzellen und ihre Bedeutung für die zytostatische Therapie. Verh Dtsch Ges Inn Med 77: 738–743PubMedGoogle Scholar
  33. Klein HO, Lennartz KJ, Gross R, Eder M, Fischer R (1972) In-vivo- und in-vitro-Untersuchungen zur Zellkinetik und Synchronisation menschlicher Tümorzellen. Dtsch Wochenschr 97: 1273–1282CrossRefGoogle Scholar
  34. Klein HO, Féaux de Lacroix W, Klein PJ, Lennartz KJ, Brock N (1975) Proliferation pattern of solid and ascitic tumors as determined by autoradiography and pulse-cytophotometry. Pulse Cytophotometry Part 111: 204–213Google Scholar
  35. Kligerman MM, Heidenreich WF, Green S (1962) Distribution of tritiated thymidine about a capillary sinusoid in a transplanted mouse tumour. Nature 196: 282–283PubMedCrossRefGoogle Scholar
  36. Kuga N, Yoshida K, Seido T, Oboshi S, Koide T, Shimösato Y, Nomura T (1975) Heterotransplantation of cultured human cancer cells and human cancer tissue into nude mice. Gann 66: 547–560PubMedGoogle Scholar
  37. Lala PK, Maloney MA, Patt HM (1965) Measurement of DNA-synthesis time in myeloid-erythroid precursors. Exp Cell Res 38: 626–634PubMedCrossRefGoogle Scholar
  38. Lenhard RE, Woo KB, Freund JS, Abeloff MD (1981) Growth kinetics of small cell carcinoma of the lung. Eur J Cancer Clin Oncol 17: 899–904PubMedCrossRefGoogle Scholar
  39. Lennartz, KJ, Maurer W (1968) Auswertungsverfahren bei Doppelmarkierung mit C14- und H3- Thymidin für exponentielles Wachstum. Histochemie 13: 84–90PubMedCrossRefGoogle Scholar
  40. Lennartz KJ, Klein HO, Féaux de Lacroix W, Klein PJ (1971) Vergleichende in vivo- und in vitro- Untersuchungen der Zellkinetik experimenteller Tumoren und die Bestimmung des Generationszyklus von Tumorzellen des Menschen in vitro. Verh Dtsch Ges Pathol 55: 591–596Google Scholar
  41. Livingston RB, Ambras U, George SL, Freireich EJ, Hart JS (1974) In vitro determination of thymidine-3H labelling index in human solid tumors. Cancer Res 34: 1376–1380PubMedGoogle Scholar
  42. Mattern J, Wayss K, Haag D, Toomes H, Volm M (1980) Different growth rates of lung tumours in man and their xenografts in nude mice. Eur J Cancer 16: 289–291PubMedCrossRefGoogle Scholar
  43. Mendelsohn ML (1962 a) Chronic infusion of tritiated thymidine into mice with tumors. Science 135:213–215Google Scholar
  44. Mendelsohn ML (1962 b) Autoradiographic analysis of cell proliferation in spontaneous breast tumor of C3H mouse. III. The growth fraction. J Natl Cancer Inst 28: 1015–1029Google Scholar
  45. Meyer JA (1972) The concept and significance of growth rates in human pulmonary tumors. Ann Thorac Surg 14: 309–322PubMedCrossRefGoogle Scholar
  46. Meyer JA (1973) Growth rate versus prognosis in resected primary bronchogenic carcinomas. Cancer 31: 1468–1472PubMedCrossRefGoogle Scholar
  47. Muggia F, De Vita V (1972) In vivo tumor cell kinetic studies: use of local thymidine injection followed by fine-needle aspiration. J Lab Clin Med 80: 297–301PubMedGoogle Scholar
  48. Muggia FM (1973) Correlation of histologic types with cell kinetic studies in lung cancer. Cancer Chemother Rep 4: 69–71Google Scholar
  49. Muggia FM, Krezoski SK, Hansen HH (1974) Cell Kinetic studies in patients with small cell carci-noma of the lung. Cancer 34: 1683–1690PubMedCrossRefGoogle Scholar
  50. Nelson JSR, Schiffer LM (1973) Autoradiographic detection of DNA polymerase containing nuclei in sarcoma 180 ascites cells. Cell Tissue Kinet 6: 45–54PubMedGoogle Scholar
  51. Oehlert W, Dörmer P, Lesch R (1963) Autoradiographische Untersuchungen über die DNS-Synthese im überlebenden Tumorgewebe des Menschen. Beitr Pathol Anat 128: 468–480PubMedGoogle Scholar
  52. Putten LM van (1974) G0, a useful term? Biomedicine 20: 5–8PubMedGoogle Scholar
  53. Quastler H, Scherman FG (1959) Cell population kinetics in the intestinal epithelium of the mouse. Exp Cell Res 17: 420–438PubMedCrossRefGoogle Scholar
  54. Rajewsky MF (1965) Thymidin-Inkorporation und 02-Konzentration in Explantaten normaler und maligner Gewebe in vitro. Naturwissenschaften 52: 341–342CrossRefGoogle Scholar
  55. Rajewsky MF (1972) Proliferative Parameters of Mammalian Cell Systems and their Role in Tumor Growth and Carcinogenesis. Z Krebsforsch 78: 12–30CrossRefGoogle Scholar
  56. Salmon SE, Hoff DD von (1981) In vitro evaluation of anticancer drugs with the human tumor stem cell assay. Semin Oncol 8: 377–385PubMedGoogle Scholar
  57. Salmon SE, Hamburger AW, Soehnlein B, Durie BGM, Alberts DS, Moon TE (1978) Quantitation of differential sensitivity of human tumor stem cells to anticancer agents. N Engl J Med 298: 1321–1327PubMedCrossRefGoogle Scholar
  58. Schiffer LM, Markoe AM, Nelson JSR (1975) Evaluation of the PDP index as a monitor of growth fraction during tumor therapy. In: Hampton JC (ed) US Energy Research and Development Administration. The Cell Cycle in Malignancy and Immunity. National Technical Information Service, Springfield, pp 459–472Google Scholar
  59. Schiffer LM, Braunschweiger PG, Poulakas L (1976) Rapid methods for utilizing cell kinetics for treatment in the C3H/He spontaneous mammary tumor: effects of vincristine. Cancer Treat Rep 60: 1913–1924PubMedGoogle Scholar
  60. Schultze B (1968) Die Orthologie und Pathologie des Nukleinsäure- und Eiweißstoffwechsels der Zelle im Autoradiogramm. In: Altmann HW, Büchner F, Cottier H, Holle G, Letterer E, Masshoff W, Meessen H, Roulet F, Seifert G, Siebert G, Studer A (Hrsg) Handbuch der Allgemeinen Pathologie, Bd II, 5. Teil. Springer, Berlin Heidelberg New York, pp 466–670Google Scholar
  61. Schultze B (1969) Autoradiography at the cellular level. In: Pollister AW (ed) Physical techniques in biological research, 2nd. ed. Academic Press, New York LondonGoogle Scholar
  62. Schwartz M (1961) A biomathematical approach to clinical tumor growth. Cancer 14: 1272–1294PubMedCrossRefGoogle Scholar
  63. Shackney SE, Cohen MH, Bunn PA, Ihde DC, Minna JD (1979) The application of principles of cell kinetics in the design of treatment regimens for small cell carcinoma of the lung. In: Muggia F, Rozencweig M (eds) Lung Cancer: Progress in therapeutic research. Raven Press, New York, pp 63–71Google Scholar
  64. Spratt JS, Spratt TL (1964) Rates of growth of pulmonary metastases and host survival. Ann Surg 159: 161–171PubMedCrossRefGoogle Scholar
  65. Spratt JS, Spjut HJ, Raper CL (1963) Frequency distribution of rates of growth and estimated duration of primary pulmonary carcinomas. Cancer 16: 687–693PubMedCrossRefGoogle Scholar
  66. Steel GG (1968) Cell loss from experimental tumors. Cell Tissue Kinet 2: 193–207Google Scholar
  67. Takaki T (1980) An epithelial cell line (KNS-62) derived from a brain metastasis of bronchial squamous cell carcinoma. J Cancer Res Clin Oncol 96: 27–33PubMedCrossRefGoogle Scholar
  68. Tannock JF (1968) The relation between cell proliferation and the vascular system in transplanted mouse mammary tumour. Br J Cancer 22: 258–273PubMedCrossRefGoogle Scholar
  69. Tannock J (1980) (guest editorial) Cell kinetics - where to now? Cell Tissue Kinet 13:571–573Google Scholar
  70. Thomlinson RH, Gray LH (1955) The histological structure of some human lung cancers and the possible implications for radiotherapy. Br J Cancer 9: 539–549PubMedCrossRefGoogle Scholar
  71. Thor N, Stark M, Spieth A, Klopf M, Hilscher B, Schlipköter HW (1981) Cell kinetic examinations of human carcinomas heterotransplanted in nude mice. In: Bastert GB, Fortmeyer HP, Schmidt- Matthiesen H (eds) Fischer, Stuttgart New York, pp 351–357Google Scholar
  72. Titus JL, Shorter RG (1965) Labelling of human tumors with tritiated thymidine. Arch Pathol 79: 324–328PubMedGoogle Scholar
  73. Tubiana M, Malaise EP (1979) Combination of radiotherapy and chemotherapy: implications devided from cell kinetics. In: Muggia F, Rozencweig M (eds) Lung cancer: Progress in therapeutic research. Raven Press, New York, pp 51–61Google Scholar
  74. Weiss W (1971 a) The mitotic index in bronchogenic carcinoma. Am Rev Respir Dis 104:536–543Google Scholar
  75. Weiss W (1971b) Peripheral measurable bronchogenic carcinoma. Growth rate and period of risk after therapy. Am Rev Respir Dis 103: 198–208PubMedGoogle Scholar
  76. Weiss W, Boucot KR, Cooper DA (1968) Survival of men with peripheral lung cancer in relation to histologic characteristics and growth rate. Am Rev Respir Dis 98: 75–86PubMedGoogle Scholar
  77. Wimber DE, Quastler H (1963) A C14- and H3-thymidine double labeling technique in the study of cell proliferation in tradescention root tips. Exp Cell Res 30: 8–22CrossRefGoogle Scholar
  78. Yesner R (1979) Pathologic diagnosis of lung cancer: Overview In: Muggia F, Rozencweig M (eds) Lung Cancer: Progress in Therapeutic Research. Raven Press, New York, pp 79–82Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • H. O. Klein

There are no affiliations available

Personalised recommendations