Skip to main content

The Use of Protoplasts in the Study of Coated Vesicles

  • Conference paper
The Physiological Properties of Plant Protoplasts

Part of the book series: Proceedings in Life Sciences ((LIFE SCIENCES))

Abstract

In plant cells the plasma membrane functions as a selectively permeable boundary around the cytoplasm, acting in concert with the cell wall as an interface with the external environment. Organelles associated with the inner surface of the plasma membrane of walled cells include endoplasmic reticulum associated with the plasmodesmata, cytoskeletal elements such as cortical microtubules and microfilaments, and smooth and coated vesicles. As disruption of the plasmodesmata due to enzymatic degradation of the cell wall during the production of protoplasts also disrupts the association of the endoplasmic reticulum with the plasma membrane, in protoplasts the organelles associated with the plasma membrane are primarily cytoskeletal elements and smooth and coated vesicles of the cortical cytoplasm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Altsteil L, Branton D (1983) Fusion of coated vesicles with lysosomes: measurement with a fluorescence assay. Cell 32:921–929

    Article  Google Scholar 

  • Bonnett HT Jr (1969) Cortical cell death during lateral root formation. J Cell Biol 40:144–159

    Article  PubMed  Google Scholar 

  • Bretscher MS, Thomson JN, Pearse BMF (1980) Coated pits act as molecular filters. Proc Natl Acad Sci USA 77:4156–4159

    Article  PubMed  CAS  Google Scholar 

  • Brown MS, Anderson RGW, Goldstein JL (1983) Recycling receptors: the round-trip itinerary of migrant membrane proteins. Cell 32:663–667

    Article  PubMed  CAS  Google Scholar 

  • Cram WJ (1980) Pinocytosis in plants. New Phytol 84:1–17

    Article  Google Scholar 

  • Fowke LC, Gamborg OL (1980) Applications of protoplasts to the study of plant cells. Int Rev Cytol 68:9–51

    Article  CAS  Google Scholar 

  • Fowke LC, Griffing LR, Mersey BG, van der Valk P (1983a) Protoplasts for studies of the plasma membrane and associated cell organelles. Protoplasts 1983, Lecture Proc 6th Int Protoplast Symp Basel. Exper Suppl (Basel) 46:101–110

    Google Scholar 

  • Fowke LC, Rennie PJ, Constabel F (1983b) Organelles associated with the plasma membrane of tobacco leaf protoplasts. Plant Cell Rep 2:292–295

    Article  Google Scholar 

  • Fowke LC, Griffing LR, Mersey BG, Tanchak M (to be published 1985) Protoplasts for studies of cell organelles. In: Fowke LC, Constabel F (eds) Plant protoplasts. CRC, Boca Raton

    Google Scholar 

  • Griffing LR, Fowke LC (1985) Localization of peroxidase in soybean suspension culture cells and protoplasts: intracellular vacuole differentiation and presence of peroxidase in coated vesicles and multivesicular bodies (manuscript submitted for publication)

    Google Scholar 

  • Griffing LR, Mersey BG, Fowke LB (1984) A coated vesicle-enriched fraction from soybean protoplasts contains glucan synthetase I activity. Plant Physiol Suppl 75:2

    Google Scholar 

  • Heath IB, Seagull RW (1982) Oriented cellulose fibrils and the cytoskeleton: a critical comparison of models. In: Lloyd CW (ed) The cytoskeleton in plant growth and development. Academic, London, pp 163–182

    Google Scholar 

  • Joachim S, Robinson DG (1984) Endocytosis of cationic ferritin by bean leaf protoplasts. Eur J Cell Biol 34:212–216

    PubMed  CAS  Google Scholar 

  • Keen JH, Willingham MC, Pastan IH (1979) Clathrin-coated vesicles: isolation, dissociation and factor-dependent reassociation of clathrin baskets. Cell 16:303–312

    Article  PubMed  CAS  Google Scholar 

  • Kelly WG, Passaniti A, Woods JW, Daiss JL, Roth TF (1983) Tubulin as a molecular component of coated vesicles. J Cell Biol 97:1191–1199

    Article  PubMed  CAS  Google Scholar 

  • Marchant HJ (1978) Microtubules associated with the plasma membrane isolated from protoplasts of the green alga Mougeotia. Exp Cell Res 115:25–30

    Article  PubMed  CAS  Google Scholar 

  • Mersey BG, Fowke LC, Constabel F, Newcomb EH (1982) Preparation of a coated vesicle-enriched fraction from plant cells. Exp Cell Res 141:459–463

    Article  PubMed  CAS  Google Scholar 

  • Mersey BG, Griffing LR, Rennie PJ, Fowke LC (1983) Coated vesicles from plant protoplasts. Protoplasts 1983, Poster Proc 6th Int Protoplast Symp Basel. Exper Suppl (Basel) 45:216–217

    Google Scholar 

  • Mersey BG, Griffing LR, Rennie PJ, Fowke LC (to be published 1985) The isolation of coated vesicles from protoplasts of soybean. Planta (Berl) 163

    Google Scholar 

  • Mueller SC, Branton D (1984) Identification of coated vesicles in Saccharomyces cerevisiae. J Cell Biol 98:341–346

    Article  PubMed  CAS  Google Scholar 

  • Newcomb EH (1980) Coated vesicles: their occurrence in different plant cell types. In: Ockleford CD, Whyte A (eds) Coated vesicles. Cambridge Univ Press, New York, pp 55–68

    Chapter  Google Scholar 

  • Palevitz BA (1982) The stomatal complex as a model of cytoskeletal participation in cell differentiation. In: Lloyd CW (ed) The cytoskeleton in plant growth and development. Academic, New York, pp 345–376

    Google Scholar 

  • Patzer EJ, Schlossman DM, Rothman JE (1982) Release of clathrin from coated vesicles dependent upon a nucleoside triphosphate and a cytosol fraction. J Cell Biol 93:230–236

    Article  PubMed  CAS  Google Scholar 

  • Pearse BMF (1975) Coated vesicles from pig brain: purification and biochemical characterization. J Mol Biol 97:93–98

    Article  PubMed  CAS  Google Scholar 

  • Pearse BMF, Bretscher MS (1981) Membrane recycling by coated vesicles. Annu Rev Biochem 50:85–101

    Article  PubMed  CAS  Google Scholar 

  • Pesacreta TC, Lucas WJ (1984) The plasma membrane coat and a coated vesicle-associated reticulum of membranes: their structure and possible interrelationship in Chara corallina. J Cell Biol 98:1537–1545

    Article  PubMed  CAS  Google Scholar 

  • Pfeffer SR, Drubin DG, Kelly RB (1983) Identification of three coated vesicle components as α- and ß-tubulin linked to a phosphorylated 50,000-dalton polypeptide. J Cell Biol 97:40–47

    Article  PubMed  CAS  Google Scholar 

  • Robinson DG, Kristen U (1982) Membrane flow via the Golgi apparatus of higher plant cells. Int Rev Cytol 77:89–127

    Article  Google Scholar 

  • Robinson DG, Quader H (1982) The microtubule-microfibril syndrome. In: Lloyd CW (ed) The cytoskeleton in plant growth and development. Academic, London, pp 109–126

    Google Scholar 

  • Schook W, Puszkin S, Bloom W, Ores C, Kochwa S (1979) Mechanochemical properties of brain clathrin: interactions with actin and α-actinin and polymerization into basketlike structures or filaments. Proc Natl Acad Sci USA 76:116–120

    Article  PubMed  CAS  Google Scholar 

  • Tanchak MA, Griffing LR, Mersey BG, Fowke LC (1984) Endocytosis of cationized ferritin by coated vesicles of soybean protoplasts. Planta (Berl) 162

    Google Scholar 

  • van der Valk P, Fowke LC (1981) Ultrastructural aspects of coated vesicles in tobacco protoplasts. Can J Bot 59:1307–1313

    Article  Google Scholar 

  • van Deurs B, Nilausen K (1982) Pinocytosis in Mouse L-fibroblasts: ultrastructural evidence for a direct membrane shuttle between the plasma membrane and the lysosomal compartment. J Cell Biol 94:279–286

    Article  PubMed  Google Scholar 

  • Wehland J, Willingham MC, Dickson R, Pastan I (1981) Microinjection of anticlathrin antibodies into fibroblasts does not interfere with receptor-mediated endocytosis of α2-macroglobulin. Cell 25:105–119

    Article  PubMed  CAS  Google Scholar 

  • Wick SM, Duniec J (1983) Immunofluorescence microscopy of tubulin and microtubule arrays in plant cells I. Preprophase band development and concomitant appearance of nuclear envelope-associated tubulin. J Cell Biol 97:235–243

    Article  PubMed  CAS  Google Scholar 

  • Willingham MC, Pastan I (1983) Formation of receptosomes from plasma membrane coated pits during endocytosis: analysis by serial sections with improved membrane labelling and preservation techniques. Proc Natl Acad Sci USA 80:5617–5621

    Article  PubMed  CAS  Google Scholar 

  • Willingham MC, Rutherford AV, Gallo MG, Wehland J, Dickson RB, Schlegel R, Pastan IH (1981) Receptor-mediated endocytosis in cultured fibroblasts: cryptic coated pits and the formation of receptosomes. J Histochem Cytochem 29:1003–1013

    Article  PubMed  CAS  Google Scholar 

  • Zaremba S, Keen JH (1983) Assembly polypeptides from coated vesicles mediate reassembly of unique clathrin coats. J Cell Biol 97:1339–1347

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mersey, B.G., Griffing, L.R., Fowke, L.C. (1985). The Use of Protoplasts in the Study of Coated Vesicles. In: Pilet, PE. (eds) The Physiological Properties of Plant Protoplasts. Proceedings in Life Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70144-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70144-3_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-70146-7

  • Online ISBN: 978-3-642-70144-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics