Proline in Protoplasts: The Chemical Potential of Proline and Stress Sensitivity of Cells

  • E. Pahlich
Part of the Proceedings in Life Sciences book series (LIFE SCIENCES)


Proline and some other compatible solutes accumulate in plants in response to environmental stress. The stress factors (high and low temperature, salinity, water deficit), physiological responses towards stress and the functional aspect of proline accumulation have been reviewed by Paleg and Aspinall (1981) and Miflin (1980).


Compatible Solute Proline Accumulation Thermodynamic Activity Tobacco Protoplast Metabolic Perturbation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bates LS, Wildren RP, Teary JD (1973) Rapid determination of free proline for waterstress studies. Plant Soil 39:205–207CrossRefGoogle Scholar
  2. Boiteux A, Hess B, Sel’kov EE (1980) Creative functions of instability and oscillations in metabolic systems. Curr Top Cell Regul 17:171–201PubMedGoogle Scholar
  3. Greenstein IP, Winitz M (1961) Chemistry of the amino acids, Vol 1. Wiley, New YorkGoogle Scholar
  4. Handa S, Bressan RA, Handa AK, Carpita NC, Hasegawa PM (1983) Solutes contributing to osmotic adjustment in cultured plant cells adapted to water stress. Plant Physiol (Bethesda) 73:834–843CrossRefGoogle Scholar
  5. Harborne JB, (1977) Introduction to ecological biochemistry. Academic LondonGoogle Scholar
  6. Heinrich R, Rapoport TA (1974) A linear steady-state treatment of enzymic chains. General properties, control and effector strenght. Eur J Biochem 42:89–95PubMedCrossRefGoogle Scholar
  7. Heinrich R, Rapoport TA (1983) The utility of methematical models for the understanding of metabolic systems. Biochem Soc Trans 11:29–35Google Scholar
  8. Heyser JW, Nabors MW (1981) Growth, water content and solute accumulation of two tobacco cell lines cultured on sodium chloride, Dextran and Polyethylene glycol. Plant Physiol (Bethesda) 68:1454–1459CrossRefGoogle Scholar
  9. Kacser H (1983) The control of enzyme systems in vivo: elasticity analysis of the steady-state. Biochem Soc Trans 11:35–40PubMedGoogle Scholar
  10. Kacser H, Bums JA (1973) The control of flux. In: Rate control of biological processes. Sym Soc Biol Vol 27. Cambridge Press, Cambridge, pp 65–104Google Scholar
  11. Krishna Sastry KS, Udayakumar M, Devendra R, Mekkri AA (1982) Solubility of proline and its biological significance. Curr Sci (Bangalore) 51:485–486Google Scholar
  12. Leigh RA, Ahmad N, Wyn RG (1981) Assessment of glycinebetaine and proline compartmentation by analysis of isolated beet vacuoles. Planta (Berl) 153:34–41CrossRefGoogle Scholar
  13. Miflin BJ (ed) (1980) In: Stumpf PK, Conn EE (ed inchief) The Biochemistry of plants. A comprehensive treatise, Vol 5. Amino acids and derivates. Academic, New YorkGoogle Scholar
  14. Moore WJ, Hummel DO (1976) Physikalische Chemie. Walter de Gruyter, BerlinGoogle Scholar
  15. Mühlbach HP, Sänger HL (1981) Continous replication of potato spindle tuber viroid (PSTV) in permanent cell culture of potato and tomato. Bio Sci Rep 1:79–87CrossRefGoogle Scholar
  16. Nobel PS (1974) Introduction to biophysical plant physiology. Freeman, San FranciscoGoogle Scholar
  17. Pahlich E (1984) Prinzipien der Geschwindigkeitskontrolle von Stoffwechselabläufen. Orientierungshilfe für die praktische Arbeit. Vieweg, BraunschweigGoogle Scholar
  18. Pahlich E (to be published) Water stress induced metabolic perturbations: primary mechanisms and theoretical backgroundGoogle Scholar
  19. Pahlich E, Stadermann T (1984) The thermodynamic activity of proline in ternary solutions of different water potentials. Z Pflanzenphysiol 115:91–96Google Scholar
  20. Pahlich E, Jäger H-J, Kaschel E (1981) Thermodynamische Betrachtungen über die reversible Reaktionssequenz Glutaminsäure Prolin. Z Pflanzenphysiol 101:137–144Google Scholar
  21. Pahlich E, Jäger H-J, Horz M (1982) Weitere Uuntersuchungen zur thermodynamischen Struktur der Biosynthesesequenz Glutaminsäure Prolin in wassergestressten Buschbohnen. Z Pflanzenphysiol 105:475–478Google Scholar
  22. Pahlich E, Kerres R, Jäger H-J (1983) Influence of water stress on the vacuole/extravacuole distribution of proline in protoplasts of Nicotiana rustica. Plant Physiol (Bethesda) 72:590–591CrossRefGoogle Scholar
  23. Paleg LG, Aspinall D (eds) (1981). The physiology and biochemistry of drought resistence in plants. Academic, New YorkGoogle Scholar
  24. Reich JG, Sel’kov EE (1981) Energy metabolism of the cell. A theoretical treatise. Academic, LondonGoogle Scholar
  25. Schiffman Y (1980) Bifurcation in the privileged two-dimensional reaction-diffusion system as the ligand-induced redistribution, and biochemical control as its functional significance. Prog Biophys Mol Biol 36:88–122Google Scholar
  26. Schrier EE, Robinson RA (1974) Free energy relations in aqueous amino acid and peptide solutions containing sodium chloride. J Solution Chem 3:493–501CrossRefGoogle Scholar
  27. Slatyer RO (1967) Plant-water relations. Academic Press, LondonGoogle Scholar
  28. Watad AA, Reinhold L, Lerner HR (1983) Comparison between a stable NaCl-selected Nicotiana cell line and the wild type. K+, Na+ and proline pools as a function of salinity. Plant Physiol (Bethesda) 73:624–629CrossRefGoogle Scholar
  29. Wiggins PM (1975) Cellular functions of a cell in a metastable equilibrium state. J Theor Biol 52:99–11PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • E. Pahlich

There are no affiliations available

Personalised recommendations