Advertisement

Bacterial Adhesion to Plant Root Surfaces

  • F. B. Dazzo
Part of the Life Sciences Research Reports book series (DAHLEM, volume 31)

Abstract

As plant roots grow, they come into constant contact with microorganisms. Following attachment, the microorganisms may influence plant morphogenesis, nutrition, symbiosis, and pathogenesis. Microbial attachment to plant roots is an important initial event of cellular recognition in infection processes of symbionts and pathogens. This review focuses on the selective attachment in Rhizobium-legume, Azospirillum and Klebsiella-grass, and Agrobacterium-dicot associations as models for understanding detailed biochemical mechanisms of bacterial attachment to roots. These studies emphasize the dynamic, multiphase nature of bacterial attachment to plant host cells and open new avenues for controlling these interactions for man’s benefit.

Keywords

Root Hair Agrobacterium Tumefaciens Bacterial Adhesion Grass Root Bacterial Attachment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    Dazzo, F.B., and Brill, W.J. 1978. Regulation by fixed nitrogen of host-symbiont recognition in the Rhizobium-clover symbiosis. Plant Physiol. 62: 18–21.PubMedCrossRefGoogle Scholar
  2. (2).
    Dazzo, F.B., and Truchet, G.L. 1983. Interactions of lectins and their saccharide receptors in the Rhizobium-legume symbiosis. J. Membr. Biol. 73: 1–16.CrossRefGoogle Scholar
  3. (3).
    Dazzo, F.B.; Truchet, G.L.; Sherwood, J.E.; Hrabak, E.H.; and Gardiol, A.E. 1982. Alteration of the trifoliin A-binding capsule of Rhizobium trifolii 0403 by enzymes released from clover roots. Appl. Envir. Microbiol. 44: 478–490.Google Scholar
  4. (4).
    Hooykaas, P.J.; van Brussel, A.A.N.; den Hulk-Ras, H.; van Slogteren, G.M.; and Schilperoort, R.A. 1981. Sym plasmid of Rhizobium trifolii expressed in different rhizobia species and Agrobacterium tumefaciens. Nature 291: 351–353.CrossRefGoogle Scholar
  5. (5).
    Hrabak, E.M.; Urbano, M.R.; and Dazzo, F.B. 1981. Growth-phase dependent immunodeterminants of Rhizobium trifolii lipopolysaccharide which bind trifoliin A, a white clover lectin. J. Bacteriol. 148: 697–711.PubMedGoogle Scholar
  6. (6).
    Kamberger, W. 1979. Role of cell surface polysaccharides in the Rhizobium-pea symbiosis. FEMS Microbiol. Lett. 6: 361–365.CrossRefGoogle Scholar
  7. (7).
    Korhonen, T.; Haahtela, K.; Ahonen, A.; Rehn, M.; Vaisanen, V.; Pere, A.; and Tarkka, E. 1982. Adhesion of nitrogen fixing Klebsiellas to plant roots. 2nd National Symposium on Biological Nitrogen Fixation. Helsinki, Finland, pp. 143–150. Helsinki: SITRA.Google Scholar
  8. (8).
    Matthysse, A.G. 1983. The role of cellulose fibrils in Agrobacterium tumefaciens infection. J. Bacteriol. 154: 906–915.PubMedGoogle Scholar
  9. (9).
    Matthyse, A.G., and Gurlitz, R.H.G. 1982. Plant cell range for attachment of Agrobacterium tumefaciens to tissue culture cells. Physiol. Plant Pathol. 21: 381–387.CrossRefGoogle Scholar
  10. (10).
    Matthysse, A.G.; Holmes, K.V.; and Gurlitz, R.H. 1981. Elaboration of cellulose fibrils by Agrobacterium tumefaciens during attachment to carrot cells. J. Bacteriol. 145; 583–595.PubMedGoogle Scholar
  11. (11).
    Matthysse, A.G.; Holmes, K.V.; and Gurlitz, R.H.G. 1982. Binding of Agrobacterium tumefaciens to carrot protoplasts. Physiol. Plant. Pathol. 20: 27–33.CrossRefGoogle Scholar
  12. (12).
    Mort, A.J., and Bauer, W.D. 1980. Composition of the capsular and extracellular polysaccharides of Rhizobium japonicum: changes with culture age and correlations with binding of soybean seed lectin to the bacteria. Plant Physiol. 66: 158–163.PubMedCrossRefGoogle Scholar
  13. (13).
    Rao, S.S.; Lippincott, B.B.; and Lippincott, J.A. 1982. Agrobacterium adherence involves the pectic portion of the host cell wall and is sensitive to the degree of pectin methylation. Physiol. Plant. 56: 374–380.CrossRefGoogle Scholar
  14. (14).
    Russa, R.; Urbanik, T.; Kowalczuk, E.; and Lorkiewicz, Z. 1982. Correlation between occurrence of plasmid pUCS202 and lipopolysaccharide alterations in Rhizobium. FEMS Microbiol. Lett. 13 : 161–165.CrossRefGoogle Scholar
  15. (15).
    Sherwood, J.E.; Vasse, J.; Dazzo, F.B.; and Truchet, G.L. 1984. Development and trifoliin A-binding ability of the capsule of Rhizobium trifolii. J. Bacteriol. 159; 145–152.PubMedGoogle Scholar
  16. (16).
    Umali-Garcia, M.; Hubbell, D.H.; Gaskins, M.; and Dazzo, F.B. 1980. Association of Azospirillum with grass roots. Appl. Envir. Microbiol. 39: 219–226.Google Scholar
  17. (17).
    van der Schaal, I.A.M.; Logman, T.J.; Diaz, C.L.; and Kijne, J.W. 1983. Growth-phase dependent pea (Pisum sativum L.) lectin receptors of Rhizobium leguminosarum. In Advances in Nitrogen Fixation Research, eds. C. Veegers and W. Newton, p. 432. The Hague, Netherlands: Martinus Nijhoff.Google Scholar
  18. (18).
    van Rensberg, H.J., and Strijdom, B. 1982. Root surface association in relation to nodulation of Medicago sativa. Appl. Envir. Microbiol. 44: 93–97.Google Scholar
  19. (19).
    Zurkowski, W. 1980. Specific adsorption of bacteria to clover root hairs, related to the presence of the plasmid pWZ2 in cells of Rhizobium trifolii. Microbios 27: 27–32PubMedGoogle Scholar

Copyright information

© Dr. S. Bernhard, Dahlem Konferenzen, Berlin 1984

Authors and Affiliations

  • F. B. Dazzo
    • 1
  1. 1.Dept. of Microbiology and Public HealthMichigan State UniversityEast LansingUSA

Personalised recommendations