Skip to main content

Adhesion to Inanimate Surfaces

  • Conference paper
Microbial Adhesion and Aggregation

Part of the book series: Life Sciences Research Reports ((DAHLEM LIFE,volume 31))

Abstract

Two experimental rationales applied to understanding interfaces in microbial ecology are: a) the exchange of bacteria between interfaces and the bulk phase, and b) the strong influence of environmental conditions on the extent and degree of adhesion. Recent studies (16, 20) very clearly show that surface active molecules, immobilized at both a solid- and an air-water interface, are scavenged and by this process transported into the bulk phase by both rod-shaped hydrophobic and hydrophilic bacteria and reversibly adhering “crawling” cells of Leptospira. With respect to the second point, it was shown that flux of nutrients in normally low nutrient, oligotrophic, aquatic environments (29) led to correspondingly rapid changes in bacterial cell physiology, morphology, and surface characteristics. Small starved cells in aquatic ecosystems appear to have an increased tendency for firm adhesion (7, 21), and growth under C- or N-limitation as compared to growth without nutrient limitation leads to drastic changes in cell surface properties and the adhesion pattern (5).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Absolom, D.R.; Lamberti, F.V.; Policova, Z.; Zingg, W.; van Oss, J.; and Neumann, A.W. 1983. Surface thermodynamics of bacterial adhesion. Appl. Envir. Microbiol. 46: 90–97.

    CAS  Google Scholar 

  2. Arakawa, K.; Tokiwano, K.; Ohtomo, N.; and Kedaira, H. 1979. A note in aqueous solutions. Bull. Chem. Soc. Jpn. 52: 2483–2488.

    Article  CAS  Google Scholar 

  3. Azam, F., and Hodson, R.E. 1981. Multiphasic kinetics for D-glucose uptake by assemblages of natural marine bacteria. Mar. Ecol. - Progr. Ser. 6: 213–222.

    Article  CAS  Google Scholar 

  4. Blanchard, D.C., and Syzdek, L.D. 1978. Seven problems in bubble and jet drop researches. Limn. Ocean. 23: 389–400.

    Article  Google Scholar 

  5. Brown, C.M.Ellwood, D.C.Hunter J.R1977 Growth of bacteria at surfaces: Influence of nutrient limitationFEMS Microbiol. Lett 1: 163–166

    Article  CAS  Google Scholar 

  6. Dahlback, B.; Hermansson, M.; Kjelleberg, S.; and Norkrans, B. 1981. The hydrophobicity of bacteria - an important factor in their initial adhesion at the air-water interface. Arch. Microbiol. 128: 267–270.

    Article  PubMed  CAS  Google Scholar 

  7. Dawson, M.P.; Humphrey, B.A.; and Marshall, K.C. 1981. Adhesion, a tactic in the survival strategy of a marine vibrio during starvation. Curr. Microbiol. 6: 195–198.

    Article  Google Scholar 

  8. Dexter, S.C.; Sullivan, J.D., Jr.; Williams, J. Ill; and Watson, S.W. 1975. Influence of substrate wettability on the attachment of marine bacteria to various surfaces. Appl. Microbiol. 30: 298–308.

    PubMed  CAS  Google Scholar 

  9. Doyle, R.J.; Nesbitt, W.E.; and Taylor, K.G. 1982. On the mechanism of adherence of Streptococcus sanguis to hydroxylapatite. FEMS Microbiol. Lett. 15: 1–5.

    Article  CAS  Google Scholar 

  10. Fletcher, M. 1980. The question of passive versus active attachment mechanisms in non-specific bacterial adhesion. In Microbial Adhesion to Surfaces, eds. R.C.W. Berkeley, J.M. Lynch, J. Mellling, P.R. Rutter, and B. Vincent, pp. 197–210. Chichester: Ellis Horwood.

    Google Scholar 

  11. Fletcher, M. 1983. The effects of methanol, ethanol, propanol and butanol on bacterial attachment to surfaces. J. Gen. Microbiol. 129: 633–641.

    CAS  Google Scholar 

  12. Fletcher, M., and Loeb, G.I. 1979. Influence of substratum characteristics on the attachment of a marine pseudomonad to solid surfaces. Appl. Envir. Microbiol. 37: 67–72.

    CAS  Google Scholar 

  13. Fletcher, M., and Marshall, K.C. 1982. Are solid surfaces of ecological significance to aquatic bacteria? In Advances in Microbial Ecology, ed. K.C. Marshall, vol. 6, pp. 199–236. New York: Plenum Press.

    Google Scholar 

  14. Gerson, D.F., and Scheer, D. 1980. Cell surface energy, contact angles and phase partition. III. Adhesion of bacterial cells to hydrophobic surfaces. Biochim. Biophys. Acta 602: 506–510.

    Article  PubMed  CAS  Google Scholar 

  15. Goldman, J.C. 1983. Oceanic nutrient cycles. In Flow of Energy and Materials in Marine Ecosystems, ed. M.J. Fasham. New York: Plenum Press, in press.

    Google Scholar 

  16. Hermansson, M., and Dahlback, B. 1983. Bacterial activity at the air/water interface. Microbial Ecol. 9: 317–328.

    Article  Google Scholar 

  17. Hermansson, M.; Kjelleberg, S.; Korhonen, T.K.; and Stenstrom, T.A. 1982. Hydrophobic and electrostatic characterization of surface structures of bacteria and its relationship to adhesion at an air- water surface. Arch. Microbiol. 131: 308–312.

    Article  CAS  Google Scholar 

  18. Ishida, Y.; Shibahara, K.; Uchida, H.; and Kadota, H. 1980. Distribution of obligately oligotrophic bacteria in Lake Biwa. Bull. Jap. Soc. Sci. Fish. 46: 1151–1158.

    Article  Google Scholar 

  19. Jonsson, P., and Wadstrom, T. 1983. High surface hydrophobicity of Staphylococus aureus as revealed by hydrophobic interaction chromatography. Curr. Microbiol. 8: 347–353.

    Article  CAS  Google Scholar 

  20. Kefford, B.; Kjelleberg, S.; and Marshall, K.C. 1982. Bacterial scavenging: Utilization of fatty acids localized at a solid-liquid interface. Arch. Microbiol. 133: 257–360.

    Article  CAS  Google Scholar 

  21. Kjelleberg, S.; Humphrey, B.A.; and Marshall, K.C. 1983. Initial phases of starvation and activity of bacteria at surfaces. Appl. Envir. Microbiol. 46: 978–984.

    CAS  Google Scholar 

  22. Marshall, K.C. 1979. Growth at interfaces. In Strategies of Microbial Life in Extreme Environments, ed. M. Shilo, pp. 281–290. Dahlem Konferenzen. Weinheim: Verlag Chemie.

    Google Scholar 

  23. Marshall, K.C., and Cruickshank, R.H. 1973. Cell surface hydrophobicity and the orientation of certain bacteria at interfaces. Arch. Mikrobiol. 91: 29–40.

    Article  PubMed  CAS  Google Scholar 

  24. Marshall, K.C.; Stout, R.; and Mitchell, R. 1971. Mechanism of the initial events in the sorption of marine bacteria to surfaces. J. Gen. Microbiol. 68: 337–348.

    CAS  Google Scholar 

  25. Morita, R.Y. 1982. Starvation survival of heterotrophs in the marine environment. In Advances in Microbial Ecology, ed. K.C. Marshall, vol. 6, pp. 171–198. New York: Plenum Press.

    Google Scholar 

  26. Neumann, A.W.; Good, R.J.; Hope, C.J.; and Sejpal, M. 1974. An equation-of-state approach to determine surface tensions of low- energy solids from contact angles. J. Coll. Interface Sci. 49: 291–304.

    Article  CAS  Google Scholar 

  27. Norkrans, B. 1980 Surface microlayers in aquatic environments In Advances in Microbial Ecology , ed. M. Alexander Vol 4, pp. 51–85. New York: Plenum Press.

    Google Scholar 

  28. Ofek, I.; Whitnack, E.; and Beachey, E.H. 1983. Hydrophobic interactions of group A streptococci with hexadecane droplets. J. Bacteriol. 154: 139–145.

    PubMed  CAS  Google Scholar 

  29. Poindexter, J.S. 1981 Oligotrophy: Feast and famine existence. In Advances in Microbial Ecology, ed. M. Alexander, vol. 5, pp. 63–89. New York: Plenum Press.

    Google Scholar 

  30. Pringle, J.H., and Fletcher, M. 1983. Influence of substratum wettability on attachment of freshwater bacteria to solid surfaces. Appl. Envir. Microbiol. 45: 811–817.

    CAS  Google Scholar 

  31. Pringle, J.H.; Fletcher, M.; and Ellwood, D.C. 1983. Selection of attachment mutants during the continuous culture of Pseudomonas fluorescens and relationship between attachment ability and surface composition. J. Gen. Microbiol. 129: 2557–2569.

    CAS  Google Scholar 

  32. Roper, M.M., and Marshall, K.C. 1974. Modification of the interaction between Escherichia coli and bacteriophage in saline sediment. Microbial Ecol. 1: 1–13.

    Article  Google Scholar 

  33. Rosenberg, E.; Gottlieb, A.; and Rosenberg, M. 1983. Inhibition of bacterial adherence to epithelial cells and hydrocarbons by emulsan. Infec. Immun. 39: 39–1028.

    CAS  Google Scholar 

  34. Rosenberg, E.; Kaplan, N.; Pines, O.; Rosenberg, M.; and Gutnik, D. 1983. Capsular polysaccharides interfere with adherence of Acinetobacter calcoaceticus to hydrocarbon. FEMS Microbiol. Lett. 17: 17–160.

    Article  CAS  Google Scholar 

  35. Rosenberg, M.; Bayer, E.A.; Delarea, J.; and Rosenberg, E. 1982. Role of thin fimbriae in adherence and growth of Acinetobacter calcoaceticus on hexadecane. Appl. Envir. Microbiol. 44: 44–937.

    CAS  Google Scholar 

  36. Rosenberg, M.; Rosenberg, E.; Judes, H.; and Weiss, E. 1983. Hypothesis. Bacterial adherence to hydrocarbons and to surfaces in the oral cavity. FEMS Microbiol. Lett. 20: 1–5.

    Article  Google Scholar 

  37. Williams, P.J. leB. 1970. Heterotrophic utilization of dissolved organic compounds in the sea. I. Size distribution between respiration and incorporation of growth substrates. J. Marine Biol. Ass. UK 50: 50–870.

    Article  CAS  Google Scholar 

  38. Williams, P.J. leB. 1981. Incorporation of microheterotrophic processes into the classical paradigm of the planktonic food web. Kiel. Meeresforsch. Spec. Publ. 5: 5–28.

    Google Scholar 

  39. Wilson, C.A., and Stevenson, L.H. 1980. The dynamics of the bacterial population associated with a salt marsh. J. Exp. Mar. Biol. Ecol. 48: 48–138.

    Article  Google Scholar 

  40. Young, L.Y. 1978. Bacterioneuston examined with critical point drying and transmission electron microscopy. Microbial Ecol. 4: 4–277.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

K. C. Marshall

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Dr. S. Bernhard, Dahlem Konferenzen, Berlin

About this paper

Cite this paper

Kjelleberg, S. (1984). Adhesion to Inanimate Surfaces. In: Marshall, K.C. (eds) Microbial Adhesion and Aggregation. Life Sciences Research Reports, vol 31. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70137-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70137-5_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-70139-9

  • Online ISBN: 978-3-642-70137-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics