Attachment of Bacteria: Advantage or Disadvantage for Survival in the Aquatic Environment

  • H.-G. Hoppe
Part of the Life Sciences Research Reports book series (DAHLEM, volume 31)


This review is based on the evaluation of observations of attached bacterial numbers and activities from the aquatic biosphere. The term “activity” is discussed with respect to these bacteria, and it is suggested that measurements of extracellular activities should be applied as a most relevant means to determine the ecological role of attached bacteria. The portion of attached bacteria can vary from a few % to 94% of total bacteria abundance in different aquatic regions depending on particle abundance, particle composition, and nutrient conditions in the water phase. Characteristics of uptake and respiration of dissolved organic compounds do not necessarily exhibit an advantage for attached bacteria in comparison to free-living ones. However, preliminary experiments have shown that attached bacteria are provided with special extracellular enzymatic faculties concerning Vmax and Km of selected enzymes. In sediment systems, where mechanical stress can be a dominant factor, attachment to protected areas is a necessity for the survival of bacteria.


Extracellular Enzymatic Activity Bacterial Attachment Attached Bacterium Kaolin Particle Attached Mode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    Azam, F.; Field, J.G.; Gray, J.S.; Meyer-Reil, L.-A.; and Thingstad, E. 1983. The ecological role of water-column microbes in the sea. Mar. Ecol.-Prog. Ser. 10: 257–263.CrossRefGoogle Scholar
  2. (2).
    Azam, F., and Hodson, R.E. 1977. Size distribution and activity of marine microheterotrophs. Limn. Ocean. 22: 492–501.CrossRefGoogle Scholar
  3. (3).
    Bell, C.R., and Albright, L.J. 1982. Attached and free-floating bacteria in a diverse selection of water bodies. Appl. Envir. Microbiol. 43: 1227–1237.Google Scholar
  4. (4).
    Cammen, L.M., and Walker, J.A. 1982. Distribution and activity of attached and free-living suspended bacteria in the Bay of Fundy. Can. J. Fish. Aquat. Sci. 39: 1655–1663.CrossRefGoogle Scholar
  5. (5).
    Chave, K.E. 1970. Carbonate-organic interaction in sea water. In Organic Matter in Natural Waters, ed. D.W. Hood, pp. 373–386. University of Alaska Press.Google Scholar
  6. (6).
    Chet, I.; Asketh, P.; and Mitchell, R. 1975. Repulsion of bacteria from marine surfaces. Appl. Microbiol. 30: 1043–1045.PubMedGoogle Scholar
  7. (7).
    Ducklow, H.W., and Kirchman, D.L. 1983. Bacterial dynamics and distribution during a spring diatom bloom in the Hudson River plume, USA. J. Plankton Res. 5: 333–355.CrossRefGoogle Scholar
  8. (8).
    Fellows, D.A.; Karl, D.M.; and Knauer, G.A. 1981. Large particle fluxes and the vertical transport of living carbon in the upper 1500 m of the northeast Pacific Ocean. Deep-Sea Res. 28A: 921–936.CrossRefGoogle Scholar
  9. (9).
    Gocke, K. 1975. Untersuchungen liber die Aufnahme von gelöster Glukose unter natllrlichen Verhaltnissen durch gröβenfraktioniertes Nano- und Ultrananoplankton. Kiel. Meeresforsch. 31: 87–94.Google Scholar
  10. (10).
    Gordon, A.S.; Gerchakov, S.M.; and Millero, F.J. 1983. Effects of inorganic particles on metabolism by a periphytic marine bacterium. Appl. Envir. Microbiol. 45: 411–417.Google Scholar
  11. (11).
    Hanson, R.B., and Wiebe, W.J. 1977. Heterotrophic activity associated with particulate size fractions in a Spatina alterniflora salt-marsh estuary, Sapelo Island, Georgia, USA, and the continental shelf waters. Mar. Biol. 42: 321–330.CrossRefGoogle Scholar
  12. (12).
    Hargrave, B.T. 1972. Aerobic decomposition of sediment and detritus as a function of particle surface area and organic content. Limn. Ocean. 17: 583–596.CrossRefGoogle Scholar
  13. (13).
    Hoppe, H.-G. 1976. Determination and properties of actively metabolizing heterotrophic bacteria in the sea, investigated by means of micro-autoradiography. Mar. Biol. 36: 291–302.CrossRefGoogle Scholar
  14. (14).
    Hoppe, H.-G. 1977. Analysis of actively metabolizing bacterial populations. In Microbial Ecology of a Brackish Water Environment, ed. G. Rheinheimer, pp. 179–197. Berlin: Springer-Verlag.Google Scholar
  15. (15).
    Hoppe, H.-G. 1981. Blue-green algae agglomeration in surface water: a microbiotope of high bacterial activity. Kiel. Meeresforsch. 5: 291–303.Google Scholar
  16. (16).
    Hoppe, H.-G. 1983. Significance of exoenzymatic activities in the ecology of brackish water: measurements by means of methylumbelliferyl-substrates. Mar. Ecol.-Prog. Ser. 11: 299–308.CrossRefGoogle Scholar
  17. (17).
    Hoppe, H.-G.; Gocke, K.; Zamorano, D.; and Zimmermann, R. 1983. Degradation of macromolecular organic compounds in a tropical lagoon (Cíenaga Grande, Columbia) and its ecological significance. Int. Rev. ges. Hydrobiol. 68: 811–824.CrossRefGoogle Scholar
  18. (18).
    Karl, D.M. 1982. Microbial transformation of organic matter at ocean interfaces: a review and prospectus. EOS 63; 138–140.CrossRefGoogle Scholar
  19. (19).
    Kato, K. 1984. A concept on the structure and function of bacterial community in aquatic ecosystems. Verh. Internat. Verein Limnol. 22, in press.Google Scholar
  20. (20).
    Khailov, K.M., and Finenko, Z.Z. 1970. Organic macromolecular compounds dissolved in sea-water and their inclusion into food chains. InFood Chains, ed. J.H. Steele, pp. 6–18. Edinburgh: Oliver and Boyd.Google Scholar
  21. (21).
    King, G.M., and Berman, T. 1984. Potential effects of isotopic dilution on apparent respiration in 14C-heterotrophy experiments. Mar. Ecol.-Prog. Ser., in press.Google Scholar
  22. (22).
    Kirchman, D., and Mitchell, R. 1982. Contribution of particle- bound bacteria to total microheterotrophic activity in five ponds and two marshes. Appl. Envir. Microbiol. 43: 200–209.Google Scholar
  23. (23).
    Kjelleberg, S.; Humphrey, B.A.; and Marshall, K.C. 1982. Effect of interfaces on small, starved marine bacteria. Appl. Envir. Microbiol. 43: 1166–1172.Google Scholar
  24. (24).
    Linley, E.A.S., and Field, J.G. 1982. The nature and ecological significance of bacterial aggregation in a near-shore upwelling ecosystem. Estuarine, Coastal Shelf Sci. 14: 1–11.CrossRefGoogle Scholar
  25. (25).
    Marshall, K.C. 1979. Growth at interfaces. InStrategies of Microbial Life in Extreme Environments, ed. M. Shilo, pp. 281–290. Dahlem Konferenzen. Weinheim, New York: Verlag Chemie.Google Scholar
  26. (26).
    Meyer-Reil, L.A.; Dawson, R.; Liebezeit, G.; and Tiedge, H. 1978. Fluctuations and interactions of bacterial activity in sandy beach sediments and overlying waters. Mar. Biol. 48: 161–171.CrossRefGoogle Scholar
  27. (27).
    Morita, R.Y. 1982. Starvation-survival of heterotrophs in the marine environment. InAdvances in Microbial Ecology, ed. K.C. Marshall, vol. 6, pp. 171–198. New York: Plenum Publishing Corporation.Google Scholar
  28. (28).
    Paerl, H.W., and Merkel, S.M. 1982. Differential phosphorous assimilation in attached vs. unattached microorganisms. Arch. Hydrobiol. 93: 125–143.Google Scholar
  29. (29).
    Pancholy, S.K., and Lynd, J.Q. 1972. Quantitative fluorescence analysis of soil lipase activity. Soil Biol. Biochem. 4: 257–259.CrossRefGoogle Scholar
  30. (30).
    Porter, K.G., and Feig, Y.S. 1980. The use of DAPI for identifying and counting aquatic bacteria. Limn. Ocean. 25: 943–948.CrossRefGoogle Scholar
  31. (31).
    Rheinheimer, G. 1981. Investigations on the role of bacteria in the food web of the Western Baltic. Kiel. Meeresforsch. Spec. Publ. 5: 284–290.Google Scholar
  32. (32).
    Seki, H. 1970. Microbial biomass on particulate organic matter in seawater of the euphotic zone. Appl. Microbiol. 19: 960–962.PubMedGoogle Scholar
  33. (33).
    Somville, M., and Billen, G. 1983. A method for determining exoproteasic activity in natural waters. Limn. Ocean. 28: 190–193.CrossRefGoogle Scholar
  34. (34).
    Sorokin, Y. 1970. Formation of aggregates by marine bacteria. Oceanography 192: 905–907 (translated from Russian).Google Scholar
  35. (35).
    Stevenson, L.H. 1978. A case for bacteria dormancy in aquatic systems. Microbial Ecol. 4: 127–133.CrossRefGoogle Scholar
  36. (36).
    Sugita, H.; Ishida, Y.; and Kadota, H. 1979. Kinetic analysis of promotive effects of Kaolin particles on growth of an aquatic bacterium. Bull. Jap. Soc. Sci. Fish. 45: 1381–1383.CrossRefGoogle Scholar
  37. (37).
    Velimirov, B.; Ott, J.A.; and Novak, R. 1981. Microorganisms on macrophyte debris: biodegradation and its implication in the food web. Kiel. Meeresforsch. Spec. Publ. 5: 333–344.Google Scholar
  38. (38).
    Wangersky, P.J. 1977. The role of particulate matter in the productivity of surface waters. Helg. W. Meer. 30: 546–564.CrossRefGoogle Scholar
  39. (39).
    Weise, W. 1975. Fluoreszenz- und Raster-Elektronenmikroskopische Untersuchungen über die Bakterienbesiedlung von marinen Sandsedimenten. Diploma Thesis, University of Kiel, F.R. Germany.Google Scholar
  40. (40).
    Weise, W., and Rheinheimer, G. 1979. Fluoreszenzmikroskopische Untersuchungen liber die Bakterienbesiedlung mariner Sandsedimente. Botan. Marin. 22: 99–106.CrossRefGoogle Scholar
  41. (41).
    Wiebe, W.J., and Pomeroy, L.R. 1972. Microorganisms and their association with aggregates and detritus in the sea: a microscopic study. Mem. 1st. Ital. Idrobiol. 29: 325–352.Google Scholar
  42. (42).
    Zimmermann, R. 1975. Entwicklung und Anwendung von fluoreszenz- und rasterelektronenmikroskopischen Methoden zur Ermittlung der Bakterienmenge in Wasserproben. Thesis, University of Kiel, F.R. Germany.Google Scholar
  43. (43).
    Zimmermann, R. 1977. Estimation of bacterial number and biomass by epifluorescence microscopy and scanning electron microscopy. In Microbial Ecology of a Brackish Water Environment, ed. G. Rheinheimer, pp. 103–120. Berlin: Springer-Verlag.Google Scholar

Copyright information

© Dr. S. Bernhard, Dahlem Konferenzen, Berlin 1984

Authors and Affiliations

  • H.-G. Hoppe
    • 1
  1. 1.Institut für MeereskundeKielF.R. Germany

Personalised recommendations