Skip to main content

Activities of Microorganisms Attached to Living Surfaces

  • Conference paper
Microbial Adhesion and Aggregation

Part of the book series: Life Sciences Research Reports ((DAHLEM LIFE,volume 31))

Abstract

Bacteria associated with living surfaces may or may not multiply while attached to the living substratum. Whether or not they multiply, such bacteria must utilize nutrients present in the environment often in competition with the living host cells in the substratum and other microorganisms in an attached community. If they multiply while attached to a surface, then bacteria must conform in their reproductive strategies to conditions imposed on the habitat by the living tissue sharing it. Bacteria attached to living surfaces may penetrate into and through the surface into underlying host tissues, synthesize macromolecules that alter the function of the living substratum, or produce end products of metabolism that can be utilized as carbon and energy sources by the living cells in the substratum. Such products of metabolism may also function, along with nutritional competition, to regulate the population levels and localization of other microorganisms in attached communities. These processes are understood poorly at the molecular level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barrow, P.A.; Brooker, B.E.; Fuller, R.; and Newport, M.J. 1980. The attachment of bacteria to the gastric epithelium of the pig and its importance in the microecology of the intestine. J. Appl. Bacteriol. 48: 147–154.

    Article  PubMed  CAS  Google Scholar 

  2. Blumershine, R.V., and Savage, D.C. 1978. Filamentous microbes indigenous to the murine small bowel: a scanning electron microscopic study of their morphology and attachment to the epithelium. Microb. Ecol. 4: 95–103.

    Article  Google Scholar 

  3. Bradley, S.G. 1979. Cellular and molecular mechanisms of action of bacterial endotoxins. Ann. Rev. Microbiol. 33: 67–94.

    Article  CAS  Google Scholar 

  4. Cromartie, W.J. 1941. Infection of normal and passively immunized chick embryos with Corynebacterium diphtheriae. Am. J. Path. 17: 411–420.

    PubMed  CAS  Google Scholar 

  5. Davis, C.P. 1976. Preservation of gastrointestinal bacteria and their microenvironmental associations of rats by freezing. Appl. Envir. Microbiol. 31: 304–312.

    CAS  Google Scholar 

  6. Davis, C.P., and Savage, D.C. 1974. Habitat, succession, attachment and morphology of segmented, filamentous microbes indigenous to the murine gastrointestinal tract. Infec. Immun. 10: 948–956.

    CAS  Google Scholar 

  7. Dazzo, F.B. 1980. Adsorption of microorganisms to roots and other plant surfaces. In Adsorption of Microorganisms to Surfaces, eds. G. Bitton and K.C. Marshall, pp. 253–316. New York: John Wiley.

    Google Scholar 

  8. Dinsdale, D.; Cheng, K.-J.; Wallace, R.J.; and Goodlad, R.A. 1980. Digestion of epithelial tissue of the rumen wall by adherent bacteria in infused and conventionally fed sheep. Appl. Envir. Microbiol. 39: 1059–1066.

    CAS  Google Scholar 

  9. Dudman, W.F. 1977. The role of surface polysaccharides in natural environments. In Surface Carbohydrates of the Prokaryotic Cell, ed. I. Sutherland, pp. 357–414. London: Academic Press.

    Google Scholar 

  10. Elsden, S.R.; Hitchcock, M.W.S.; Marshall, R.A.; and Phillipson, A.T. 1946. Volatile acid in the digesta of ruminants and other animals. J. Exp. Biol. 22: 191–202.

    PubMed  CAS  Google Scholar 

  11. Elwell, L.P., and Shipley, P.L. 1980. Plasmid-mediated factors associated with virulence of bacteria to animals. Ann. Rev. Microbiol. 34: 465–496.

    Article  CAS  Google Scholar 

  12. Field, M. 1979. Modes of action of enterotoxins from Vibrio cholerae and Escherichia coli. Rev. Infec. Dis. 1: 918–925.

    Article  CAS  Google Scholar 

  13. Finkelstein, R.A.; Boesman-Finkelstein, M.; and Holt, P. 1983. Vibrio cholerae hemagglutinin/lectin/protease hydrolyzes fibronectin and ovomucin: F.M. Burnet revisited. Proc. Natl. Acad. Sci. USA 80: 1092–1095.

    Article  PubMed  CAS  Google Scholar 

  14. Finkelstein, R.A., and LoSpalluto, J.J. 1969. Pathogenesis of experimental cholera. Preparation and isolation of choleragen and choleragenoid. J. Exp. Med. 130: 185–202.

    Article  PubMed  CAS  Google Scholar 

  15. Freter, R.; Brickner, H.; Fekete, J.; Vickerman, M.M.; and Carey, K.E. 1983. Survival and implantation of Escherichia coli in the intestinal tract. Infec. Immun. 39: 686–703.

    CAS  Google Scholar 

  16. Freter, R.; O’Brien, P.C.M.; and Macsai, M.S. 1981. Role of chemotaxis in the association of motile bacteria with intestinal mucosa: in vivo studies. Infec. Immun. 34: 234–240.

    CAS  Google Scholar 

  17. Fuller, R. 1977. The importance of lactobacilli in maintaining normal microbial balance in the crop. Br. J. Poult. Sci. 18: 85–94.

    Article  CAS  Google Scholar 

  18. Fuller, R.; Houghton, S.B.; and Brooker, B.E. 1981. Attachment of Streptococcus faecium to the duodenal epithelium of the chicken and its importance in colonization of the small intestine. Appl. Envir. Microbiol. 41: 1433–1441.

    CAS  Google Scholar 

  19. Griffiths, E.; Rogers, H.J.; and Bullen, J.J. 1980. Iron, plasmids and infection. Nature 284: 508–509.

    Article  PubMed  CAS  Google Scholar 

  20. Hale, T.L.; Sansonetti, P.J.; Schad, P.A.; Austin, S.; and Formal, S.B. 1983. Characterization of virulence plasmids and plasmid- associated outer membrane proteins in Shigella flexneri, Shigella sonnei, and Escherichia coli. Infec. Immun. 40: 340–350.

    CAS  Google Scholar 

  21. Johnson, A. 1981. The pathogenesis of gonorrhoea. J. Infection 3: 299–308.

    Article  CAS  Google Scholar 

  22. Jones, G.W.; Robert, D.K.; Svinarich, D.M.; and Whitfield, H.J. 1982. Association of adhesive, invasive, and virulent phenotypes of Salmonella typhimurium with autonomous 60-megadalton plasmids. Infec. Immun. 38: 476–486.

    CAS  Google Scholar 

  23. Kornfeld, S.J., and Plaut, A.G. 1981. Secretory immunity and the bacterial IgA proteases. Rev. Infec. Dis. 3: 521–534.

    Article  CAS  Google Scholar 

  24. Lankford, C.E. 1960. Factors of virulence of Vibrio cholerae. Ann. NY Acad. Sci. 88: 1203–1212.

    Article  PubMed  CAS  Google Scholar 

  25. Lee, A., and Gemmell, E. 1972. Changes in the mouse intestinal microflora during weaning: role of volatile fatty acids. Infec. Immun. 5: 1–7.

    Google Scholar 

  26. Lippincott, J.A., and Lippincott, B.B. 1980. Microbial adherence in plants. In Bacterial Adherence, ed. E.H. Beachey, pp. 375–398. London: Chapman and Hall.

    Google Scholar 

  27. Markham, J.L.; Knox, K.W.; Wicken, A.J.; and Hewett, M.J. 1975. Formation of extracellular lipoteichoic acid by oral streptococci and lactobacilli. Infec. Immun. 12: 378–386.

    CAS  Google Scholar 

  28. Marshall, K.C. 1976. Interfaces in Microbial Ecology. Cambridge, MA: Harvard University Press.

    Google Scholar 

  29. McNabb, P.C., and Tomasi, T.B. 1981. Host defense mechanisms at mucosal surfaces. Ann. Rev. Microbiol. 35; 477–496.

    Article  CAS  Google Scholar 

  30. Nester, E.W., and Kosuge, T. 1981. Plasmids specifying plant hyperplasias. Ann. Rev. Microbiol. 35: 531–565.

    Article  CAS  Google Scholar 

  31. Neutra, M.R. 1980. Prokaryotic-eukaryotic cell junctions: attachment of spirochetes and flagellated bacteria to primate large intestinal celis. J. Ultra. Res. 70: 186–203.

    Article  CAS  Google Scholar 

  32. Owen, R.L., and Nemanic, P. 1978. Antigen processing structures of the mammalian intestinal tract: an SEM study of lymphoepithelial organs. In Scanning Electron Microscopy/1978, vol. II, pp. 367–378. AMF O’Hare, IL: SEM Inc.

    Google Scholar 

  33. Pearce, W.A., and Buchanan, T.M. 1980. Structure and cell-membrane - binding properties of bacteria fimbriae. In Bacterial Adherence, ed. E.H. Beachey, pp. 289–344. London: Chapman and Hall.

    Google Scholar 

  34. Salyers, A.A.; West, S.E.H.; Vercellotti, J.R.; and Wilkins, T.D. 1977. Fermentation of mucins and plant polysaccharides by anaerobic bacteria from the human colon. Appl. Envir. Microbiol. 34: 529–533.

    CAS  Google Scholar 

  35. Savage, D.C. 1980. Adherence of normal flora to mucosal surfaces. In Bacterial Adherence, ed. E.H. Beachey, pp. 33–59. London: Chapman and Hall.

    Google Scholar 

  36. Savage, D.C. 1983. Morphological diversity among members of the gastrointestinal microflora. Int. Rev. Cyt. 82: 305–334.

    Article  CAS  Google Scholar 

  37. Savage, D.C.; Siegel, J.E.; Snellen, J.E.; and Whitt, D.D. 1981. Transit time of epithelial cells in the small intestines of germfree mice and ex-germfree mice associated with indigenous microorganisms. Appl. Envir. Microbiol. 42: 996–1001.

    CAS  Google Scholar 

  38. Savage, D.C., and Whitt, D.D. 1982. Influence of the indigenous microbiota on amounts of protein, DNA, and alkaline phosphatase activity extractable from epithelial cells of the small intestines of mice. Infec. Immun. 37: 539–549.

    CAS  Google Scholar 

  39. Schockman, G.D., and Wicken, A.J., eds. 1981. Chemistry and Biological Activities of Bacterial Surface Amphiphiles. New York: Academic Press.

    Google Scholar 

  40. Silverstein, S.C.; Steinman, R.M.; and Cohn, Z.A. 1977. Endocytosis. Ann. Rev. Biochem. 46: 669–722.

    Article  PubMed  CAS  Google Scholar 

  41. Snellen, J.E., and Savage, D.C. 1978. Freeze-fracture study of the filamentous, segmented microorganism attached to the murine small bowel. J. Bacteriol. 134: 1099–1107.

    PubMed  CAS  Google Scholar 

  42. Stanier, R.Y.; Adelberg, E.A.; and Ingraham, J.L. 1976. The Microbial World, 4th ed. Englewood Cliffs, NJ: Prentice Hall.

    Google Scholar 

  43. Stanton, T.B., and Savage, D.C. 1983. Colonization of gnotobiotic mice of Roseburia cecicola, a motile, obligately anaerobic bacterium from murine ceca. Appl. Envir. Microbiol. 45: 1677–1684.

    CAS  Google Scholar 

  44. Steffen, E.K., and Berg, R.D. 1983. Relationship between cecal population levels of indigenous bacteria and translocation to the mesenteric lymph nodes. Infec. Immun. 39: 1252–1259.

    CAS  Google Scholar 

  45. Takeuchi, A. 1967. Electron microscopic studies of experimental salmonella infection. Am. J. Path. 50: 109–136.

    PubMed  CAS  Google Scholar 

  46. Umesaki, Y.; Tohyama, K.; and Mutai, M. 1982. Biosynthesis of microvillus membrane-associated glycoproteins of small intestinal epithelial cells in germfree and conventionalized mice. J. Biochem. 92: 373–379.

    PubMed  CAS  Google Scholar 

  47. Wallace, R.J.; Cheng, K.-J.; Dinsdale, D.; and Orskov, E.R. 1979. An independent microbial flora of the epithelium and its role in the ecomicrobiology of the rumen. Nature 279: 424–426.

    Article  PubMed  CAS  Google Scholar 

  48. Weinberg, E.D. 1974. Iron and susceptibility to infectious disease. Science 184: 952–956.

    Article  PubMed  CAS  Google Scholar 

  49. Winter, J., and Bokkenheuser, V.D. 1979. Bacterial metabolism of corticoids with particular reference to the 21-dehydroxylation. J. Biol. Chem. 254: 2626–2629.

    PubMed  CAS  Google Scholar 

  50. Wolin, M.J. 1975. Interactions between the bacterial species of the rumen. In Digestion and Metabolism in the Ruminant, eds. I.W. McDonald and A.C.I. Warner, pp. 134–148. Sydney: The University of New England Publishing Unit.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

K. C. Marshall

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Dr. S. Bernhard, Dahlem Konferenzen, Berlin

About this paper

Cite this paper

Savage, D.C. (1984). Activities of Microorganisms Attached to Living Surfaces. In: Marshall, K.C. (eds) Microbial Adhesion and Aggregation. Life Sciences Research Reports, vol 31. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70137-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70137-5_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-70139-9

  • Online ISBN: 978-3-642-70137-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics