Learning by Selection

  • J.-P. Changeux
  • T. Heidmann
  • P. Patte
Part of the Dahlem Workshop Reports book series (DAHLEM, volume 29)

Abstract

Living organisms are “open” thermodynamic systems (19) that possess an internal structure and thus correspond to a privileged state of organization of matter in both space and time. The question then arises: where does this order come from? From inside the organism, from the outside world, or from both? To simplify, two extreme views can be put forward to account for this higher internal order, placing the emphasis either outside or within the biological system with respect to its relationships with the environment.

Keywords

Tyrosine Serotonin Polypeptide Acetylcholine Phencyclidine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    Benoît, P., and Changeux, J.-P. 1975. Consequences of tenotomy on the evolution of multi-innervation in developing rat soleus muscle. Brain Res. 99: 354–358.PubMedCrossRefGoogle Scholar
  2. (2).
    Benoit, P., and Changeux, J.-P. 1978. Consequences of blocking nerve activity on the evolution of multi-innervation in the regenerating neuromuscular junction of the rat. Brain. Res. 149: 89–96.Google Scholar
  3. (3).
    Berridge, M., and Rapp, P. 1979. A comparative survey of the function, mechanism and control of cellular oscillations. J. Exp. Biol. 81: 217–280.PubMedGoogle Scholar
  4. (4).
    Bodmer, W., and Cavalli-Sforza, L. 1976. Genetics, evolution and man. San Francisco: W. Freeman.Google Scholar
  5. (5).
    Changeux, J.-P. 1972. Le Cerveau et l’évènement. Communications 18: 37–47.CrossRefGoogle Scholar
  6. (6).
    Changeux, J.-P. 1980. Genetic determinism and epigenesis of the neuronal network; Is there a compromise between Chomsky and Piaget? In Language and Learning, ed. M. Piattelli, pp. 184–202. Cambridge, MA: Harvard University Press.Google Scholar
  7. (7).
    Changeux, J.-P. 1981. The acetylcholine receptor: an allosteric membrane protein. Harvey Lect. 75: 85–254.Google Scholar
  8. (8).
    Changeux, J.-P. 1983. Concluding remarks: about the “singularity” of nerve cells and its ontogenesis. Progr. Brain Res. 58: 465–478.CrossRefGoogle Scholar
  9. (9).
    Changeux, J.-P. 1983. L’Homme neuronal. Paris: Fayard.Google Scholar
  10. (10).
    Changeux, J.-P.; Courrège, P.; and Danchin, A. 1973. A theory of the epigenesis of neural networks by selective stabilization of synapses. Proc. Natl. Acad. Sci. USA 70: 2974–2978.PubMedCrossRefGoogle Scholar
  11. (11).
    Changeux, J.-P., and Danchin, A. 1974. Apprendre par stabilisation sélective de synapses en cours de développement. In L’unité de l’homme, eds. E. Morin and M. Piatteli, pp. 320–357. Paris: Le Seuil.Google Scholar
  12. (12).
    Changeux, J.-P., and Danchin, A. 1976. Selective stabilization of developing synapses as a mechanism for the specification of neuronal networks. Nature 264: 705–712.PubMedCrossRefGoogle Scholar
  13. (13).
    Chaudhari, N., and Hahn, W. 1983. Genetic expression in the developing brain. Science 220: 924–928.PubMedCrossRefGoogle Scholar
  14. (14).
    Crick, F., and Mitchison, G. 1983. The function of dream sleep. Nature 304: 111–114.PubMedCrossRefGoogle Scholar
  15. (15).
    Devillers-Thierry, A.; Giraudat, J.; Bentaboulet, M.; Changeux, J.-P. 1983. Complete mRNA coding sequences of the acetylcholine binding a -subunit of Torpedo marmorata acetylcholine receptor: A model for the transmembrane organization of the polypeptide chain. Proc. Natl. Acad. Sci. USA 80: 2067–2071.CrossRefGoogle Scholar
  16. (16).
    Edelman, G. 1978. The Mindful Brain. Cortical Organization and the Group-selective Theory of Higher Brain Functions. Cambridge, MA: MIT Press.Google Scholar
  17. (17).
    Edelman, G. 1981. Group selection as the basis for higher brain function. In The Organization of the Cerebral Cortex, eds. F. Schmitt et al. Cambridge, MA: MIT Press.Google Scholar
  18. (18).
    Edelman, G., and Finkel, L. 1984. Neuronal group selection in the cerebral cortex. In Dynamic Aspects of Neocortical Function, eds. G. Edelman et al. New York: John Wiley, in press.Google Scholar
  19. (19).
    Glansdorff, P., and Prigogine, I. 1971. Structure, stabilité et fluctuations. Paris: Masson.Google Scholar
  20. (20).
    Gouzé, J.-L.; Lasry, J.-M.; and Changeux, J.-P. 1983. Selective stabilization of muscle innervation during development: a mathematical model. Biol. Cybern. 46: 207–215.CrossRefGoogle Scholar
  21. (21).
    Greene, P. 1962. On looking for neuronal networks and “cell assemblies” that underlie behavior. Bull. Math. Biophys. 24: 247–275; 395–411.PubMedCrossRefGoogle Scholar
  22. (22).
    Grossberg, S. 1980. How does the brain build a cognitive code? Psych. Rev. 87: 1–51.Google Scholar
  23. (23).
    Hebb, D. 1949. The Organization of Behavior. New York: Wiley.Google Scholar
  24. (24).
    Heidmann, T., and Changeux, J.-P. 1982. Un modèle moléculaire de régulation d’efficacité au niveau postsynaptique d’une synapse chimique. C.R. Acad. Sc. Paris 295: 665–670.Google Scholar
  25. (25).
    Heidmann, T.; Oswald, R.; and Changeux, J.-P. 1983. Multiple sites of action for non competitive blockers on acetylcholine receptor rich membrane fragments from Torpedo marmorata. Biochemistry 22: 3112–3127.PubMedCrossRefGoogle Scholar
  26. (26).
    Henderson, C.E.; Huchet, M.; and Changeux, J.-P. 1981. Neurite outgrowth from embryonic chicken spinal neurons is promoted by media conditioned by muscle cells. Proc. Nat. Acad. Sci. USA 78: 2625–2629.PubMedCrossRefGoogle Scholar
  27. (27).
    Henderson, C.E.; Huchet, M.; and Changeux, J.-P. 1983. Denervation increases the neurite-promoting activity in extracts of skeletal muscle. Nature 302: 609–611.PubMedCrossRefGoogle Scholar
  28. (28).
    Hopfield, J. 1982. Neural networks and physical systems with emergent collective computational abilities. Proc. Nat. Acad. Sci. USA 79: 2554–2558.PubMedCrossRefGoogle Scholar
  29. (29).
    Hubel, P., and Wiesel, T. 1977. Functional architecture of macaque monkey visual cortex. Ferrier Lecture. Proc. Roy. Soc. Lond. B 198: 1–59.CrossRefGoogle Scholar
  30. (30).
    Hunter, W.S. 1913. The delayed reaction in animals. Behay. Monogr. 2: 6.Google Scholar
  31. (31).
    James, W. 1909. Précis de psychologie. Paris: Marcel Rivière.Google Scholar
  32. (32).
    Jerne, N. 1967. Antibodies and learning: selection versus instruction. In The Neurosciences, eds. G. Quarton et al., pp. 200–205. New York: Rockefeller University Press.Google Scholar
  33. (33).
    Jouvet, M. 1974. Neurobiologie de rêve. In L’Unité de l’Homme, eds. E. Morin and M. Piattelli, pp. 354–392. Paris: Ed. Le Seuil.Google Scholar
  34. (34).
    Kandel, E. 1979. Cellular insights into behavior and learning. Harvey Lect. 73: 19–92.PubMedGoogle Scholar
  35. (35).
    Katz, B. 1966. Nerve Muscle and Synapse. New York: McGraw-Hill.Google Scholar
  36. (36).
    Kosslyn, S. 1980. Images and Mind. Cambridge, MA: Harvard University Press.Google Scholar
  37. (37).
    Krebs, G., and Beavo, J. 1979. Phosphorylation, dephosphorylation of enzymes. Ann. Rev. Biochem. 48: 923–960.PubMedCrossRefGoogle Scholar
  38. (38).
    Lamouroux, A.; Biguet, N.; Samolyk, D.; Privat, A.; Salomon, J.- C.; Pujol, F.; and Mallet, J. 1982. Identification of cDNA clones coding for rat tyrosine hydroxylase antigen. Proc. Natl. Acad. Sci. USA 79: 3881–3885.PubMedCrossRefGoogle Scholar
  39. (39).
    Leder, P. 1981. The genetics of antibody diversity. Sci. Am. 246 No. 5: 72–83.Google Scholar
  40. (40).
    Levinthal, F.; Macagno, E.; and Levinthal, C. 1976. Anatomy and development of identified cells in isogenic organisms. Cold Spring Harbor. Symp. Quant. Biol. 40: 321–331.Google Scholar
  41. (41).
    Little, W. 1974. Existence of persistent states in the brain. Math. Biosci. 19: 101–120.CrossRefGoogle Scholar
  42. (42).
    Little, W., and Shaw, G. 1975. A statistical theory of short and long term memory. Behay. Biol. 14: 115.Google Scholar
  43. (43).
    Little, W., and Shaw, G. 1978. Analytic study of the memory storage capacity of neural network. Math. Biosci. 39: 281–290.CrossRefGoogle Scholar
  44. (44).
    Loeb, J. 1900. Comparative Physiology of the Brain and Comparative Psychology. New York: Putnam.CrossRefGoogle Scholar
  45. (45).
    Mariani, J. 1983. Elimination of synapses during the development of the central nervous system. Progr. Brain Res. 58: 383–392.CrossRefGoogle Scholar
  46. (46).
    Neisser, U. 1976. Cognition and reality. San Francisco: Freeman.Google Scholar
  47. (47).
    Noda, M.; Takahashi, H.; Tanabe, T.; Toyosato, M.; Kikyotani, S.; Furutani, Y.; Horose, T.; Takashima, H.; Inayama, S.; Miyata, T.; and Numa, S. 1983. Structural homology of Torpedo californica AchR subunits. Nature 302: 528–532.PubMedCrossRefGoogle Scholar
  48. (48).
    Peretto, P. 1983. Collective properties of neural networks: a statistical physics approach. Biol. Cybern., in press.Google Scholar
  49. (49).
    Purves, D., and Lichtman, J. 1980. Elimination of synapses in the developing nervous system. Science 210: 158–157.CrossRefGoogle Scholar
  50. (50).
    Shepard, R. 1975. Form, formation and transformation of internal representations. In Information Processing and Cognition, ed. R. Solso. Hillsdale, NJ: Erlbaum.Google Scholar
  51. (51).
    Shepard, R. 1984. Ecological constraints on internal representation. Third J. Gibson Memorial Lecture, Cornell University, in press.Google Scholar
  52. (52).
    Stent, G. 1973. A physiological mechanism for Hebb’s postulate of learning. Proc. Natl. Acad. Sci. USA 70: 997–1001.PubMedCrossRefGoogle Scholar
  53. (53).
    Thom, R. 1968. Topologie et signification in “l’Age de la Science” n° 4. In Modèles mathématiques de la morphogénèse, ed. R. Thom. Paris: Bourgeois.Google Scholar
  54. (54).
    Thom, R. 1980. Modèles mathématiques de la morphogénèse. Paris: Bourgeois.Google Scholar
  55. (55).
    Tolman, E.C. 1948. Cognitive maps in rats and men. Psychol. Rev. 55: 189–208.Google Scholar
  56. (56).
    Urbain. 1981. Le réseau immuniaire. La Recherche 126: 1056–1066.Google Scholar
  57. (57).
    Von der Malsburg, C. 1981. The correlation theory of brain function. Internal report 81–2, July 1981. Göttingen: Department of Neurobiology, Max Planck Institute for Biophysical Chemistry.Google Scholar
  58. (58).
    Young, J.Z. 1973. Memory as a selective process. Australian Academy of Science Report: Symposium on Biological Memory, pp. 25–45.Google Scholar
  59. (59).
    Note: For references before 1900, see: Bercherie, P. 1983. Génèse des concepts freudiens. Paris: Navarin.Google Scholar

Copyright information

© Berlin, Heildelberg, New York, Tokyo: Springer-Verlag 1984

Authors and Affiliations

  • J.-P. Changeux
    • 1
  • T. Heidmann
    • 1
  • P. Patte
    • 1
  1. 1.Neurobiologie MoléculaireInstitut PasteurParisFrance

Personalised recommendations