Advertisement

Literaturverzeichnis

  • Kurt Vanselow
  • Dietfrid Proppe
Conference paper
Part of the Medizinische Informatik und Statistik book series (MEDINFO, volume 55)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literaturverzeichnis

  1. [1]
    Ackermann L, Mergler H, Schleussner H (1968) Dokumentation des Strahlungs-bzw. Dosisbildes. In: Diethelm L, Olsson O, Strnad F, Vieten H, Zuppinger A (eds) Handbuch der medizinischen Radiologie. Vol I/1, Springer, Berlin Heidelberg New York, pp 209–304Google Scholar
  2. [2]
    Agna JW, Knowles HC, Alverson G (1958) The mineral content of normal human bone. J clin Invest 37: 1357–1361PubMedGoogle Scholar
  3. [3]
    Allisy A (1956) La mesure des doses de rayons X ou γ a l’aide d’émulsions photographiques. J Radiol Electrol 37: 249–252Google Scholar
  4. [4]
    Aloia JF, Cohn SH, Ross P, Vaswani A, Abesamis C, Ellis K. Zanzi I (1978) Skeletal mass in postmenopausal women. Am J Physiol 235: E82–E87PubMedGoogle Scholar
  5. [5]
    Aloia JF, Ross P, Vaswani A, Zanzi I, Cohn S H (1981) Rates of bone loss in postmenopausal and osteoporotic women. Calcif Tissue Int 33 (Suppl): 144Google Scholar
  6. [6]
    Angerer E von (1953) Wissenschaftliche Photographie. Akademische Verlagsgesellschaft Geest und Portig KG, LeipzigGoogle Scholar
  7. [7]
    Babaiantz L (1947) Les ostéoporoses. Radiol clin (Basel) 16: 291–322Google Scholar
  8. [8]
    Baker SL, Butterworth EC, Langley F A (1946) The calcium and nitrogen content of human bone tissue cleaned by micro-dissection. Biochem J 40: 391–396Google Scholar
  9. [9]
    Balz G, Birkner R (1956 a) Die Bestimmung des Aluminiumschwächungsgleich-wertes von Knochengewebe beim Lebenden. Strahlentherapie 99: 221–226PubMedGoogle Scholar
  10. [10]
    Balz G, Birkner R, Wachsmann F (1955) Experimentelle Untersuchungen über die Absorption von Röntgenstrahlen in verschiedenen Geweben. Strahlentherapie 97: 382–388PubMedGoogle Scholar
  11. [11]
    Banzer D, Schneider H, Hauser K-P, Knoop F (1974) Radiologischer Nachweis der renalen Osteopathie unter Dauerdialyse. Dtsch med Wschr 99: 48–51PubMedGoogle Scholar
  12. [12]
    Banzer DH, Schneider U, Risch WD, Botsch H (1976) Roentgen signs of vertebral demineralization and mineral content of peripheral cancellous bone. Am J Roentgenol 126: 1306–1308Google Scholar
  13. [13]
    Bartelheimer H (1957) Mineral haushalt und Knochen, Klinik. Fortschr. Röntgen-str 86 (Beih 39): 59–64Google Scholar
  14. [14]
    Becker K (1961 a) Beitrag zur Filmdosimetrie energiereicher Quantenstrahlung. I. Theoretische Grundlagen. Fortschr. Röntgenstr 95: 694–703Google Scholar
  15. [15]
    Becker K (1961 b) Beitrag zur Filmdosimetrie energiereicher Quantenstrahlung. IT. Experimentelle Ergebnisse. Fortschr Röntgenstr 95: 839–847Google Scholar
  16. [16]
    Becker K (1962) Filmdosimetrie. Grundlagen und Methoden der photographisehen Verfahren zur Strahlendosismessung. Springer, Berlin Göttingen HeidelbergGoogle Scholar
  17. [17]
    Bergstrom WH (1956) The skeleton as an electrolyte reservoir. Metabolism 5: 433–437PubMedGoogle Scholar
  18. [18]
    Birkenhager-Frenkel DH, Schmitz PIM, Breuls PNWM, Lockfeer JHM, v d Heul RO (1977) Biological variation as compared to inter-observer variation and intrinsic error of measurement, for some parameters within single bone biopsies. In: Meunier PJ (ed) Bone histomorphometry. Second International Workshop. Armour Montagu, Paris pp 79–87Google Scholar
  19. [19]
    Biryukov YN, Krasnykh IG (1970) Changes in optical density of bone tissue and calcium metabolism in the cosmonauts. Kosmich Biol Med 4: 42–45Google Scholar
  20. [20]
    Black J, Mattson RU (1982) Relationship between porosity and mineralization in the Haversian osteon. Calcif Tissue Int 34: 332–336PubMedGoogle Scholar
  21. [21]
    Bordier PJ, Tun-Chot S (1972) Quantitative histology of metabolic bone disease. J clin Endocr 1: 197–215Google Scholar
  22. [22]
    Boskey AL, Cohen ML, Bullough PG (1982) Hard tissue biochemistry: A comparison of fresh-frozen and formalin-fixed tissue samples. Calcif Tissue Int 34: 328–331PubMedGoogle Scholar
  23. [23]
    Bouillon R, Bergmann P, Verbank M, Van Baelen H (eds) (1981) XVI European Symposium on Calcified Tissues 13–17. September 1981 Knokke/Belgium. Abstracts. Calcif Tissue Int 33 (Suppl)Google Scholar
  24. [24]
    Bregulla W, Schmidt T (1981) Bedeutung der Seltene-Erden-Folien für die Dosisreduzierung in der Röntgendiagnostik. Electromedica 49: 189–193Google Scholar
  25. [25]
    Broman GE, Trotter M, Peterson RR (1958) The density of selected bones of the human skeleton. Am J phys Anthropol 16: 197–211Google Scholar
  26. [26]
    Bronstein IN Semendjajew KA (1968) Taschenbuch der Mathematik. 8. Aufl. Harry Deutsch, Zürich Frankfurt/MainGoogle Scholar
  27. [27]
    Brose HL, Molesworth EJ (1937) The absorption of X-rays by the skin. Br J Radiol 10: 567–570Google Scholar
  28. [28]
    Bunsen R, Roscoe HE (1863) Photo-chemical researches Part V. On the direct measurement of the chemical action of sunlight. Phil Trans roy Soc 153; 139–160Google Scholar
  29. [29]
    Burns CM, Henderson N (1935) The mineral constituents of bone. I. Methods of analysis. Biochem J 29: 2385–2395PubMedGoogle Scholar
  30. [30]
    Burns CM, Henderson N (1936) The mineral constituents of bone. II. The influence of age on the mineral constituents of bones from kittens and pups. Biochem J 30: 1207–1214PubMedGoogle Scholar
  31. [31]
    Chalmers J (1973) Distribution of osteoporotic changes in the ageing skeleton. Clin Endocrinol Metabol 2: 203–220Google Scholar
  32. [32]
    Chesnut CH, Nelp WB, Lewellen TK (1976) Quantitation of bone mass in osteoporosis: recent advances. In: Nielsen SP, Hjørting-Hansen E (eds) Calcified Tissues 1975. Fadl, Kopenhagen, pp 370–374Google Scholar
  33. [33]
    Christiansen C, Rödbro P (1975 a) Estimation of total body calcium from the bone mineral content of the forearm. Scand J clin Lab Invest 35: 425–431PubMedGoogle Scholar
  34. [34]
    Christiansen C, Rödbro P (1975 b) Bone mineral content and estimated total body calcium in normal adults. Scand J clin Lab Invest 35: 433–439PubMedGoogle Scholar
  35. [35]
    Christiansen C, Rödbro P, Nielsen CT (1975) Bone mineral content and estimated total body calcium in normal children and adolescents. Scand J clin Lab Invest 35: 507–510PubMedGoogle Scholar
  36. [36]
    Clark I, Smith MR (1964) Effects of hypervitaminosis A and D on skeletal metabolism. J biol Chem 239: 1266–1271PubMedGoogle Scholar
  37. [37]
    Cohn SH (1981 a) Non-invasive measurements of bone mass and their clinical application. CRS Press, Boca Raton, FloridaGoogle Scholar
  38. [38]
    Cohn SH (1981 b) Retrospect and prospects. In: Cohn SH (ed) Non-invasive measurements of bone mass and their clinical application. CRC Press, Boca Raton, Florida, pp 215–223Google Scholar
  39. [39]
    Cohn SH (1982) Techniques for determining the efficacy of treatment of osteoporosis. Calcif Tissue Int 34: 433–438PubMedGoogle Scholar
  40. [40]
    Cohn SH, Aloia JF, Letteri JM (1978) Noninvasive measurements of bone mass and their clinical significance. Calcif Tissue Res 26: 1–3PubMedGoogle Scholar
  41. [41]
    Cohn SH, Aloia JF, Vaswani AN, Ellis KJ (1981) A cross-sectional study of age-related changes in bone mass in women by neutron activation. Calcif Tissue Int 33 (Suppl): 156Google Scholar
  42. [42]
    Colbert C (1972) The osseous system. An overview. Invest Radiol 7: 223–232PubMedGoogle Scholar
  43. [43]
    Colbert C, Bachtell RS (1981) Radiographic absorptiometry (photodensitometry). In: Cohn SH (ed) Non-invasive measurements of bone mass and their clinical application. CRS Press, Boca Raton, Florida, pp 51–84Google Scholar
  44. [44]
    Currey JD (1969) Mechanical consequences of variation in mineral content of bone. J Biomech 2: 1–11PubMedGoogle Scholar
  45. [45]
    Dalén N (1973) Bone mineral assay. Choice of measuring sites. In: Mazess RB (ed) (Second) Int Conf Bone Mineral Measurement. Chicago 1973. DHEW Publication No. (NIH) 75–683. US Department of Health, Education, and Welfare, Washington D.C., pp 60–64Google Scholar
  46. [46]
    Dalén N, Alvestrand A (1973) Bone mineral content in chronic renal failure and after renal transplantation. Clin Nephrol 1: 338–346PubMedGoogle Scholar
  47. [47]
    Dalén N, Jacobsen B (1974) Bone mineral assay: Choice of measuring sites. Invest Radiol 9: 174–185PubMedGoogle Scholar
  48. [48]
    Darby AJ, Meunier PJ (1981) Mean wall thickness and formation periods ofb trabecularbone packets in idiopathic osteoporosis. Calcif Tissue Int 33: 199–204PubMedGoogle Scholar
  49. [49]
    Degenhardt H (1981) FiTmuniverselle VerstärkerfoTien mit Zweibanden-Leuchtstoff Titan 2. ETectromedica 49: 154–158Google Scholar
  50. [50]
    Degenhardt H, Kuhn H, Pfeiler M (1975) Dosiseinsparung und Abbildungsgüte bei Film-Folien-System. Röntgenpraxis 28: 271–278PubMedGoogle Scholar
  51. [51]
    Deininger HK (1974) Die Angiokinedensitometrie der Niere. Habil.-Schrift Med Fakultät Universität TübingenGoogle Scholar
  52. [52]
    Deitrick JE, Whedon GD, Shorr E (1948) Effects of immobilization upon various metabolic and physiologic functions of normal men. Am J Med 4: 3–36PubMedGoogle Scholar
  53. [53]
    Delling G (1974) Altersabhängige Skelettveränderungen. Histomorphometrische Untersuchungen an der menschlichen Beckenkammspongiosa. Klin Wschr 52: 318–325PubMedGoogle Scholar
  54. [54]
    Dequeker J (1972) Bone loss in normal and pathological conditions. Leuven Univ Press, Leuven, BelgiumGoogle Scholar
  55. [55]
    Dequeker J (1977) Problems in measuring amount of bone: Reproducibility, variability, sequential evaluation. In: Meunier PJ (ed) Bone histomorphometry: Second International Workshop. Armour Montagu, Paris, pp 19–37Google Scholar
  56. [56]
    Dickerson JWT (1962 a) The effect of development on the composition of a long bone of the pig, rat and fowl. Biochem J 82: 47–55PubMedGoogle Scholar
  57. [57]
    Dickerson JWT (1962b) Changes in the composition of the human femur during growth. Biochem J 82: 56–61PubMedGoogle Scholar
  58. [58]
    DIN 1319 Grundbegriffe der Meßtechnik. Deutscher Normenausschuß. 1 Berlin 30Google Scholar
  59. [59]
    DIN 4512 Photographische Sensitometrie Deutscher Normenausschuß 1 Berlin 30Google Scholar
  60. [60]
    Donaldson CL, Hulley SB, Vogel JM, Hattner RS, Bayers JH, Mc Millan DE (1970) Effect of prolonged bed rest on bone mineral. Metabolism 19: 1071–1084PubMedGoogle Scholar
  61. [61]
    Dulce H-J (1980) Biochemische Struktur des Knochens. In: Kuhlencordt F, Bartelheimer H (eds) Klinische Osteologie. (In: Schwiegk H (ed) Handbuch der inneren Medizin, 5. Aufl., Vol 6/1A). Springer, Berlin Heidelberg New York, pp 43–58Google Scholar
  62. [62]
    Edholm P, Jacobson B (1959) Quantitative determination of iodine in vivo. Acta radiol (Stockh.) 52: 337–346Google Scholar
  63. [63]
    Eggert J (1960) Lehrbuch der physikalischen Chemie. S. Hirzel, StuttgartGoogle Scholar
  64. [64]
    Erikson U, Helmius G, Hennig K, Johansson L, Enghoff E, Ruhn G (1981) Determination of myocardial blood flow by videodensitometry. Fortschr Röntgenstr 135: 404–406Google Scholar
  65. [65]
    Erikson U, Ruhn G, Björk L (1980) Videodensitometry in angiography. Medicamundi 25; 4–8Google Scholar
  66. [66]
    Fassbender CW, Heinzel F, Mohr H (1957) Experimentelle Untersuchungen zur Strahlenschutzüberwachung mit Hilfe der Filmschwärzungsmethode. Fortschr Röntgenstr. 87: 232–239Google Scholar
  67. [67]
    FDA (1979) Guidelines for the clinical evaluation of drugs used in the treatment of osteoporosis. DHEW Publication No. (FDA) 80–3094. US Department of Health, Education, and Welfare (Federal Drug Administration), Washington U.C.Google Scholar
  68. [68]
    Fehrentz D, Zunter F (1968) Zur Filmdosimetrie in der Strahlentherapie. Strahlentherapie 135: 301–306PubMedGoogle Scholar
  69. [69]
    Follis RH (1952) The inorganic composition of the human rib with and without marrow elements. J biol Chem 194: 223–226PubMedGoogle Scholar
  70. [70]
    Forbes RM, Cooper AR, Mitchell HH (1953) The composition of the adult human body as determined by chemical analysis. J biol Chem 203: 359–366PubMedGoogle Scholar
  71. [71]
    Frame B, Guiang HL, Frost HM, Reynolds WA (1971) Osteomalacia induced by laxative (Phenolphthalein) ingestion. Arch intern Med 128: 794–796PubMedGoogle Scholar
  72. [72]
    Frieser H (1975) Photographische Informationsaufzeichnung. R. Oldenbourg, München Wien, Focal Press, London New YorkGoogle Scholar
  73. [73]
    Fusi G (1953) Saggio sperimentale sulle prime manifestazioni radiologiche di osteoporosi. Radiol clin (Basel) 22: 123–129Google Scholar
  74. [74]
    Gerthsen C, Kneser H O (1971) Physik. Springer Verlag, Berlin Heidelberg New YorkGoogle Scholar
  75. [75]
    Gierse H (1976) The cancellous structure in the calcaneus and its relation to mechanical stressing. Anat Embryol 150: 63–83PubMedGoogle Scholar
  76. [76]
    Glick PL, Rowe DJ (1981) Effects of chronic protein deficiency on skeletal development of young rats. Calcif Tissue Int 33: 223–231PubMedGoogle Scholar
  77. [77]
    Glocker R, Macherauch E (1971) Röntgen- und Kernphysik für Mediziner und Biophysiker. Thieme, StuttgartGoogle Scholar
  78. [78]
    Goering U, Dümmling K (1968) Sichtbarmachen des Röntgenbildes mit Hilfe von Luminescenzschirmen. In: Diethelm L, Olsson O, Strnad F, Vieten H, Zuppinger A (eds) Handbuch der medizinischen Radiologie. Vol 1/1. Springer, Berlin Heidelberg New York, pp 143–208Google Scholar
  79. [79]
    Goldsmith NF, Johnston JO, Ury H, Vose G, Colbert C (1971) Bone mineral estimation in normal and osteoporotic women. A comparability trial of four methods and seven bone sites. J Bone Jt Surg 53A: 83–100Google Scholar
  80. [80]
    Greening JR (1951) The photographic action of X-rays. Proc Phys Soc (London) 64B: 977–992Google Scholar
  81. [81]
    Guerra LE, Amato JA, Maher JF (1979) Inconsistency in radiographic evaluation of progressive renal osteodystrophy. Clin Nephrol 11: 307–312PubMedGoogle Scholar
  82. [82]
    Hardt AB, Jee WSS (1982) Trabecular bone structural variation in biopsy sites of the beagle ilium. Calcif Tissue Int 34: 391–395PubMedGoogle Scholar
  83. [83]
    Hasche E (1939) Ober die Messung des Strahlenschutzes auf photographischem Wege in Röntgeneinheiten. Fortschr Röntgenstr 60: 74–77Google Scholar
  84. [84]
    Heintzen P, Bürsch J, Osypka P, Moldenhauer K (1967) Röntgenologische Kon-trastmitteTdichtemessungen zur Untersuchung der Herz- und Kreislauffunktion (Schluß). Teil IV. Elektromedizin 12: 145–157Google Scholar
  85. [85]
    Hermanutz KD, Gebhardt M, Meurin G (1976) Zur röntgenologischen Mineral-äquivalentbestimmung des Knochens. — Das Problem des Dosisaufbaufaktors (build up factor). Fortschr Röntgenstr. 125: 178–180Google Scholar
  86. [86]
    Herms H-J, Motzkus F (1969) Fortschritte in der KontrastmittelentwickTung durch Brom? Der Radiologe 9, 371–374PubMedGoogle Scholar
  87. [87]
    Heuck F (1970) Die radiologische Erfassung des Mineralgehaltes des Knochens. In: Diethelm L (ed) Skeletanatomie (Röntgendiagnostik). (In: Diethelm L, Olsson O, Strnad F, Vieten H, Zuppinger A (eds) Handbuch der medizinischen Radiologie, Vol IV/1). Springer, Berlin Heidelberg New York, pp 106–295Google Scholar
  88. [88]
    Heuck F, Piepgras U, Vanselow K (1969) Densitometrische Messungen des Blutstromvolumens der Arteria carotis. Radiologe 9: 443–448PubMedGoogle Scholar
  89. [89]
    Heuck F, Schmidt E (1954) Röntgenologische und chemisch-analytische Untersuchungen des pathologisch veränderten Knochens. Fortschr Röntgenstr 81 (Beiheft Verh Dtsch Röntgenges Vol 37): 27Google Scholar
  90. [90]
    Heuck F, Schmidt E (1960 a) Die quantitative Bestimmung des Mineralgehaltes des Knochen aus dem Röntgenbild. Fortschr Röntgenstr 93: 523–554Google Scholar
  91. [91]
    Heuck F, Schmidt E (1960 b) Die praktische Anwendung einer Methode zur quantitativen Bestimmung des Kalksalzgehaltes gesunder und kranker Knochen. Fortschr Röntgenstr 93: 761–783Google Scholar
  92. [92]
    Heuck F, Vanselow K (1971) Die radiologisch-densitometrische Analyse der Blutströmung und Gewebsdurchblutung. Biomed. Technik 16: 51–58Google Scholar
  93. [93]
    Heuck F, Vanselow K (1980) Röntgenologie, Densitometrie, Neutronen- und Photonenaktivierungsanalyse und Ultraschalluntersuchungen. In: Kuhlencordt F, Bartelheimer H (eds) Klinische Osteologie. (In: Schwiegk H (ed) Handbuch der inneren Medizin. 5. Auf1, Vol 6/1A). Springer, Berlin Heidelberg New York, pp 221–397Google Scholar
  94. [94]
    Huber P (1967) Die angiographische Beurteilung der Hirndurchblutung; der klinische Wert der Densitometrie. Schweiz Arch Neurol Neurochir Psychiat 100: 1–37Google Scholar
  95. [95]
    Hübner W, Eisenlohr HH, Jaeger RG (1974) Relativmethoden. In: Jaeger RG, Hübner W (eds) Dosimetrie und Strahlenschutz. 2. Aufl. Georg Thieme, Stuttgart, pp 188–212Google Scholar
  96. [96]
    Hulley SB, Vogel J M, Donaldson CL, Bayers JH, Friedman RJ, Rosen SN (1971) The effect of supplemental oral phosphate on the bone mineral changes during prolonged bed rest. J clin Invest 50: 2506–2518PubMedGoogle Scholar
  97. [97]
    Hurter F, Driffield VC (1890) Photo-chemical investigations and a new method of determination of the sensitiveness of photographic plates. J Soc chem Industry 9: 455–469Google Scholar
  98. [98]
    Isherwood I, Rutherford RA, Pulían BR, Adams PH (1976) Bone mineral estimation by computer-assisted transverse axial tomography. Lancet 2: 712–715PubMedGoogle Scholar
  99. [99]
    Iskrant AP, Smith RW (1969) Osteoporosis in women 45 years and over related to subsequent fractures. Publ Hlth Rep (Wash.) 84: 33–38Google Scholar
  100. [100]
    Jacobson B (1958) Dichromography — a method for in vivo quantitative analysis of certain elements. Science 128: 1346PubMedGoogle Scholar
  101. [101]
    Jaeger RG (1959) Dosimetrie und Strahlenschutz. Georg Thieme, StuttgartGoogle Scholar
  102. [102]
    Jaeger RG, Hübner W (1974) Dosimetrie und Strahlenschutz. Physikalischtechnische Daten und Methoden für die Praxis. 2. Aufl. Georg Thieme, StuttgartGoogle Scholar
  103. [103]
    Jensen F (1965) Die Technik der Erzeugung von Röntgenstrahlen. In: Vieten H (ed) Physikalische Grundlagen und Technik. (In: Diethelm L, Olsson O, Strnad F, Vieten H, Zuppinger A (eds) Handbuch der medizinischen Radiologie. Vol I/2). Springer, Berlin Heidelberg New York, pp 1–84Google Scholar
  104. [104]
    Keele DK, Vose GP (1971) Bone density in nonambulatory children. Am J Dis Child 121: 204–206PubMedGoogle Scholar
  105. [105]
    Kellgren JH, Bier F (1956) Radiological signs of rheumatoid arthritis. Ann rheum Dis 15: 55–60PubMedGoogle Scholar
  106. [106]
    Kleemann R (1951) Strahlenschutzmessungen mit Hilfe von Filmen. Dissertation ErlangenGoogle Scholar
  107. [107]
    Kl legis U, VanseTow K (1983) Influence of time resolution in cine and video cardangiography. In: Heuck FHW (ed) Radiological functional analysis of the vascular system. Contrast media — methods — results. Springer, Berlin Heidelberg New York Tokio, pp 96–102Google Scholar
  108. [108]
    Knese K-H (1980) Entwicklungsgeschichte, Anatomie, Histologie. In: Kuhlencordt F, Bartelsheimer H (eds) Klinische Osteologie. (In: Schwiegk H (ed) Handbuch der inneren Medizin. 5. Auf., Vol 6/1A). Springer, Berlin Heidelberg New York, pp 3–42Google Scholar
  109. [109]
    Knief J-J (1967) Quantitative Untersuchung der Verteilung der Hartsubstanzen im Knochen in ihrer Beziehung zur lokalen mechanischen Beanspruchung. Methodik und biomechanische Problematik, dargestellt am Beispiel des coxalen Femurendes. Z Anat Entwickl-Gesch 126: 55–80Google Scholar
  110. [110]
    Kraft A, Nahrstedt U, Widenmann L (1975) Untersuchungen an neuartigen Ver-stärkerfolen für die Röntgendiagnostik. Röntgenpraxis 28: 264–270PubMedGoogle Scholar
  111. [111]
    Krokowski E (1959) Die Absorption von Röntgenstrahlen im Knochen. Fortschr Röntgenstr 91: 76–84Google Scholar
  112. [112]
    Krokowski E (1962) Die typische Radiusfraktur. Analyse von 2000 Beobachtungen. Schweiz med Wschr 92: 1120–1122PubMedGoogle Scholar
  113. [113]
    Krokowski E (1963) Zur Quantitativen Beurteilung von osteoporotischen und traumatischen Wirbelfrakturen. Z ärztl Fortbild 52: 413–415Google Scholar
  114. [114]
    Krølner B, Nielsen SP, Lund B, Lund BJ, Sørensen OH, Uhrenholdt A (1980) Measurement of bone mineral content (BMC) of the lumbar spine. II. Correlation between forearm BMC and lumbar spine BMC. Scand J clin Lab Invest 40: 665–670PubMedGoogle Scholar
  115. [115]
    Kruse H-P, Kuhlencordt F (1980) Osteomalazie. In: Kuhlencordt F, Bartelheimer H (eds) Klinische Osteologie. (In: Schwiegk H (ed) Handbuch der inneren Medizin. 5. Aufl., Vol 6/1B). Springer, Berlin Heidelberg New York, pp 751–820Google Scholar
  116. [116]
    Kuhlencordt F, Kruse H-P (1980) Osteoporose. In: Kuhlencordt F, Bartelheimer H (eds) Klinische Osteologie. (In: Schwiegk H (ed) Handbuch der inneren Medizin. 5. Aufl., Vol 6/1B). Springer, Berlin Heidelberg New York, pp 675–749Google Scholar
  117. [117]
    Kuhn H (1983) Bildrauschen bei Film-Folien-Systemen: seine Ursachen und Komponenten. Electromedica 51; 46–51Google Scholar
  118. [1l8]
    Kunkle BN, Norrdin RW, Brooks RK, Thomassen RW (1982) Osteopenia with decreased bone formation in beagles with malabsorption syndrome. Calcif Tissue Int 34: 396–402PubMedGoogle Scholar
  119. [119]
    Lachman E (1955) Osteoporosis: The potentialities and limitations of its roentgenologic diagnosis. Am J Roentgenol 74: 712–715Google Scholar
  120. [120]
    Lachman E, Whelan M (1935) The roentgendiagnosis of osteoporosis and its limitations. Radiology 25: 165–177Google Scholar
  121. [121]
    Lae PG (1960) A modified method for personnel monitoring. I. Hemispherical filters. II. Automatic dose estimation. Br J Radiol 33: 748–756Google Scholar
  122. [122]
    Langendorff H, Spiegler G, Wachsmann F (1952) Strahlenschutzüberwachung mit Filmen. Fortschr Röntgenstr 77: 143–153Google Scholar
  123. [123]
    Lauterbur PC (1973) Image formation by induced local interactions: Examples employing nuclear magnetic resonance. Nature 242: 190–191Google Scholar
  124. [124]
    Lindenfelser R, Schoenmachers J, Haubert P, Krönert W (1971) Der spongiöse Knochen beim primären Hyperparathyreoidismus. Virchows Arch path Anat B 9: 333–342Google Scholar
  125. [125]
    Lindgren JU, Merchant CR, DeLuca HF (1982) Effect of 1,25-dihydroxyvitamin D3, on osteopenia induced by prednisolone in adult rats. Calcif Tissue Int 34: 253–257PubMedGoogle Scholar
  126. [126]
    Lutwak L, Whedon GD, Lachance PA, Reid JM, Lipscomb HS (1969) Mineral, electrolyte and nitrogen balance studies of the Gemini-VII fourteen-day orbital space flight. J clin Endocr 29: 1140–1156PubMedGoogle Scholar
  127. [127]
    Mack PB, LaChance PA, Vose GP, Vogt FB (1967) Bone demineral ization of foot and hand of Gemini-Titan IV, V and VII astronauts during orbital flight. Am J Roentgenol 100: 503–511Google Scholar
  128. [128]
    Mack PB, Vogt FB (1971) Roentgenographic bone density changes in astronauts during representative Apollo space flight. Am J Roentgenol 113: 621–633Google Scholar
  129. [129]
    Madsen M (1977) Vertebral and periphal bone mineral content by photon absorptiometry. Invest Radiol 12: 185–188PubMedGoogle Scholar
  130. [130]
    Manzke E, Chesnut CH, Wergedal JE, Baylink DJ, Nelp WB (1975) Relationship between local and total bone mass in osteoporosis. Metabolism 24: 605–615PubMedGoogle Scholar
  131. [131]
    Marek J, Wellmann O Urbányi L (1934) Chemischer Aufbau der Knochensalze bei gesunden und bei rhachitischen Tieren. Hoppe-Seylers Z physiol Chem 226: 3–17Google Scholar
  132. [132]
    Mauderli W (1957 a) Dosimetrie von Röntgen- und Gammastrahlen mittels photo-graphischer Filme. 1. Teil: Physikalische Grundlagen. Fortschr Röntgenstr 86: 634–642Google Scholar
  133. [133]
    Mayneord WV (1951) Some problems of radiation protection. The Silvanus Thompson memorial lecture. Br J Radiol 24: 525–537PubMedGoogle Scholar
  134. [134]
    Mazess RB (1979 a) Measurement of skeletal status by noninvasive methods. Calcif Tissue Int 28: 89–92PubMedGoogle Scholar
  135. [135]
    Mazess RB (1979 b) Non-invasive measurement of bone. In: Barzel US (ed) Osteoporosis II. Grune and Stratton, New York, pp 5–26Google Scholar
  136. [136]
    Mazess RB (1981 a) Photon absorptiometry. In: Cohn SH (ed) Noninvasive measurement of bone mass and their clinical application. CRC Press. Boca Raton, Florida, pp 85–99Google Scholar
  137. [137]
    Mazess RB (1981 b) Total body and regional bone mineral by dualphoton absorptiometry. Calcif Tissue Int 33: 328Google Scholar
  138. [138]
    Mazess RB, Cameron JR, Sorenson JA (1970) A Comparison of radiological methods for determining bone mineral content. In: Whedon GD, Cameron JR (eds) Progress in Methods of Bone Mineral Measurement. US Department of Health, Education, and Welfare, Washington D.C., pp 455–479Google Scholar
  139. [139]
    Mazess RB, Peppier WW, Chesnut CH, Nelp WB, Cohn SH, Zanzi I (1981) Total body bone mineral and lean body mass by dualphoton absorptiometry. II. Comparison with total body cacium by neutron activation analysis. Calcif Tissue Int 33: 361–363PubMedGoogle Scholar
  140. [140]
    Meema HE, Harrison JE, McNeill KG, Oreopoulos DG (1977) Correlations between peripheral and central skeletal mineral content in chronic renal failure patients and in osteoporotics. Skeletal Radiol 1: 169–172Google Scholar
  141. [141]
    Meema HE, Meema S (1969) Cortical bone mineral density versus cortical thickness in the diagnosis of osteoporosis: a roentgenologic-densitometric study. J Amer Geriat Soc 17: 120–141PubMedGoogle Scholar
  142. [142]
    Meema HE, Meema S (1974) Involutional (physiologic) bone loss in women and the feasibility of preventing structural failure. J Amer Geriat Soc 22: 443–452PubMedGoogle Scholar
  143. [143]
    Meisen F, Meisen B, Mosekilde L (1978) An evaluation of the quantitative parameters applied in bone histology. Acta path microbiol scand 86: 63–69Google Scholar
  144. [144]
    Meisen F, Virdik A, Meisen B, Mosekilde L (1977) Some relations between bone strength, ash weight and histomorphometry. In: Meunier PJ (ed) Bone Histomorphometry: Second International Workshop. Armour Montagu, Paris, pp 89–95Google Scholar
  145. [145]
    Méndez J, Keys A, Anderson JT, Grande F (1960) Density of fat and bone mineral of the mammalian body. Metabolism 9: 472–477Google Scholar
  146. [146]
    Merz WA, Schenk RK (1970) Quantitative structural analysis of human cancellous bone. Acta anat (Basel) 75: 54–66Google Scholar
  147. [147]
    Meschan J (1978) Analyse der Röntgenbilder. Vol 1. Skelet, Wirbelsäule. Ferdinand Enke, StuttgartGoogle Scholar
  148. [148]
    Minder W (1955) Röntgenphysik. 2. Aufl Springer, WienGoogle Scholar
  149. [149]
    Mutter E (1963) Kompendium der Photographie Band 1 Die Grundlagen der Photographie. Verlag für Radio-, Foto- und Kinotechnik GmbH, Berlin-Borsig-waldeGoogle Scholar
  150. [150]
    Nagel M, Heuck F, Epple E, Decker D (1974) Bestimmung des Knochenmineralge-haltes aus dem Röntgenbild mit Hilfe der digitalen Datenverarbeitung. Fortschr Röntgenstr 121: 604–612Google Scholar
  151. [151]
    Neuman MW (1982) Blood: bone equilibrium. Calcif Tissue Int 34: 117–120PubMedGoogle Scholar
  152. [152]
    Neuman WF (1958) The chemical dynamics of bone mineral. University of Chicago Press, ChicagoGoogle Scholar
  153. [153]
    Neuman WF, Brommage R, Myers CR (1977) The measurement of Ca2+ effluxes from bone. Calcif Tissue Res 24: 113–117PubMedGoogle Scholar
  154. [154]
    Neuman WF, Diamond AG, Neuman MW (1980) Blood: bone disequilibrium. IV. Reciprocal effects of calcium and phosphate concentrations on ion fluxes. Calcif Tissue Int 32: 229–236PubMedGoogle Scholar
  155. [155]
    Neuman WF, Neuman MW (1953) The nature of the mineral phase of bone. Chem Rev 53: 1–45Google Scholar
  156. [156]
    Neuman WF, Neuman MW, Myers CR (1979) Blood: bone disequilibrium. III. The linkage between cell energetics and Ca fluxes. Am J Physiol 236 C: 244–248Google Scholar
  157. [157]
    Newton-John HF, Morgan DB (1970) The loss of bone with age, osteoporosis, and fractures. Clin Orthop 71: 229–252PubMedGoogle Scholar
  158. [158]
    Nichols Jr G, Nichols N (1956) The role of bone in sodium metabolism. Metabolism 5: 438–446PubMedGoogle Scholar
  159. [159]
    Nilsson BE, Westlin NE (1973) Bone mass and colle’s fracture. In: Mazess RB (ed) Int Conf Bone Mineral Measurement. DHEW Publication No. (NIH) 75–683. US Department of Health, Education, and Welfare, Washington D.C., pp 362–368Google Scholar
  160. [160]
    Oeser H, Krokowski E (1963) Quantitative analysis of inorganic substances in the body. A method using X-rays of different qualities. Br J Radiol 36: 274–279PubMedGoogle Scholar
  161. [161]
    Olah AH (1974) Histomorphometrie des Knochens. Verh dtsch Ges Path 58: 104–113Google Scholar
  162. [162]
    Omnell K-Å (1957) Quantitative roentgenologic studies on changes in mineral content of bone in vivo. Acta radiol (Stockh.) Suppl 148: 1–86Google Scholar
  163. [163]
    Osypka P, Heintzen P (1967) New applications of television technics for quantitative measurements in radiology and cardiology. Dig 7 Int Conf med biol Eng, Stockholm, pp 108–110Google Scholar
  164. [164]
    Paschke K-G, Maurer H-J (1969) Schwärzungsmessungen von Kontrastmitteln bei Röntgenstrahlung verschiedener Energien. Fortschr. Röntgenstr. 110; 262–266Google Scholar
  165. [165]
    Pesch H-J, Kahle M, Prestele H, Schorn B, Schuster W (1979) Hydroxylapatitge-halt von Lendenwirbelkörpern und Schenkelhals. Fortschr 130: 491–496Google Scholar
  166. [166]
    Pfeiler M (1981) Neuere Entwicklungen der Computertomographie (unter Einbeziehung computertomographischer Nicht-Röntgenverfahren). Röntgenpraxis 34: 3–13PubMedGoogle Scholar
  167. [167]
    Piepgras U (1971) Die Messung der Hirndurchblutung mit einer angiokinemato-graphisch-densitometrischen Methode. Ann Univ sarav Med 8: 76–134Google Scholar
  168. [168]
    Priboth W, Börnert D, Fritzsche H (1966) Zur Methode der röntgenologisch-photometrisehen Bestimmung des Aschegehaltes im Knochen beim Rind. Zbl Vet-Med 13 A: 628–644Google Scholar
  169. [169]
    Proppe D, Vanselow K (1981) Bestimmung physikalischer Parameter der Röntgenstrahlung und der durchstrahlten Materie aus dem Röntgenfilm. Biomed. Technik 26: 3–8Google Scholar
  170. [170]
    Proppe D, Vanselow K (1983) Problems of Choise of Reference System for Quantitative Radiological Circulation Analysis. In Heuck FHW (Ed) Radiological Functional Analysis of the Vascular System. Springer Verlag Berlin Heidelberg New York pp 50–62Google Scholar
  171. [171]
    Pullan BR, Roberts TE (1978) Bone mineral measurement using a EMI-scanner und standard methods: a comparative study. Br J Radiol 51: 24–28PubMedGoogle Scholar
  172. [172]
    Quintar H (1963) Die praktische Anwendung einer röntgenologischen Methode zur quantitativen Bestimmung des Kalksalzgehaltes am Radius. Dissertation KielGoogle Scholar
  173. [173]
    Radiochemical Manual (1962) Part 1: Physical Data Radiochemical Centre Amers-ham, BuckinghamshireGoogle Scholar
  174. [174]
    Rassow J (1974) Systematische Fehler bei der radiologischen Mineralgehaltsbe-stimmung des Knochens. Fortschr Röntgenstr 121: 77–86Google Scholar
  175. [175]
    Rauber AA (1876) Elasticität und Festigkeit der Knochen. Engelmann, LeidigGoogle Scholar
  176. [176]
    Rehbach R (1977) Messung des Mineralsalzgehaltes am Kalkaneus mit der 125J-Absorptionsmethode und dem röntgenologischen Verfahren nach Heuck.Dissertation, MünchenGoogle Scholar
  177. [177]
    Reich NE, Seidelmann RE, Tubbs RR, Maclntyre WJ, Meaney RF, Alfidi JR, Pepe RG (1976) Determination of bone mineral content using CT scanning. Am J Roentgenol 127: 593–594Google Scholar
  178. [178]
    Ringe J-D (1983) Klinische Bedeutung der direkten Messung des Knochenmineral-gehalts. 125J-Photonenabsorptionsmessungen an 1252 Fällen. Fortschr Med 101: 186–190PubMedGoogle Scholar
  179. [179]
    Ringe J-D, Kuhlencordt F (1980) Ostitis fibrosa generalisata. In: Kuhlencordt F, Bartelheimer H (eds) Klinische Osteologie (In: Schwiegk H (ed) Handbuch der inneren Medizin. 5. Aufl., Vol 6/1B). Springer, Berlin Heidelberg New York, pp 821–901Google Scholar
  180. [180]
    Risch WD, Banzer DH, Schneider U (1977) Radiometrische Untersuchungen der Knochendichte beim Mamma-Karzinom. 58. Tag. Dtsch Röntgen-Ges Münster. Werres, Recklinghausen, p 20Google Scholar
  181. [181]
    Robinson RA (1964) Observations regarding compartments for tracer calcium in the body. In: Frost HM (ed) Bone Mineral Dynamics. Little & Brown, Boston pp 423–439Google Scholar
  182. [182]
    Robinson RA, Elliott SR (1957) The water content of bone. I. The mass of water, inorganic crystals, organic matrix, and “CO2 space” components in a unit volume of dog bone. J Bone Jt Surg 39 A: 167–187Google Scholar
  183. [183]
    Robinson RA, Watson ML (1955) Crystal-Collagen relationship in bone as observed in the electron microscope. III. Crystal and collagen morphology as a function of age. Ann NY Acad Sci 60: 596–628PubMedGoogle Scholar
  184. [184]
    Rogers HJ, Weidmann SM, Parkinson A (1952) Studies on the skeletal tissues. 2. The collagen content of bones from rabbits, oxen and humans. Biochem J 50: 537–542PubMedGoogle Scholar
  185. [185]
    Rossi RP, Hendee WR, Ahrens CR (1976) An evaluation of rare earth screen/film combinations. Radiology 121: 465–471PubMedGoogle Scholar
  186. [186]
    Rowland RE (1966) Exchangeable bone calcium. Clin Orthop 49: 233–248PubMedGoogle Scholar
  187. [187]
    Rowland RE, Jowsey J, Marshall JH (1959) Microscopic metabolism of calcium in bone. III. Microradiographic measurements of mineral density. Radiat Res 10: 234–242PubMedGoogle Scholar
  188. [188]
    Ruiz-Gijon J (1941) über die chemische Zusammensetzung der Knochen bei Hungerzuständen. Biochem Z 308: 59–63Google Scholar
  189. [189]
    Rustgi SN, Siegel JA, Braunstein M, Craven JD, Greenfield A (1980) Accuracy of bone mineral data. Am J Roentgenol 135: 275–277Google Scholar
  190. [190]
    Rutishauser W (1969) Kreislaufanalyse mittels Röntgendensitometrie. Ein neues Indikatorverdünnungsverfahren. In: Kappert A, Senn A, Waibel P, Widmer LK (eds) Aktuelle Probleme in der Angiologie. Vol 6. Hans Huber, Bern Stuttgart WienGoogle Scholar
  191. [191]
    Sabatier J-P, Héron J-F, Petiot J-F, Sabatier N, Dronne J-J (1982) Clinical usefulness of a bone mineral measurement method on the femoral shaft. Calcif Tissue Int 34: 21–28PubMedGoogle Scholar
  192. [192]
    Saechtling H (1974) Kunststoff-Taschenbuch. 19. Aufl. Carl Hanser, München Wien, pp 384, 388 ffGoogle Scholar
  193. [193]
    Scarpale PJ, Neuman WF (1976) The blood: bone disequilibrium. II. Evidence against the active accumulation of calcium or phosphate into the bone extracellular fluid. Calcif Tissue Res 20: 151–158Google Scholar
  194. [194]
    Schad N (1970) Concentration of contrast material in angiography during phased and contionuous injection. Am. J. Roentgenology 109; 25–36Google Scholar
  195. [195]
    Schlungbaum W (1979) Medizinische Strahlenkunde. 6. Aufl. Walter de Gruyter, Berlin New YorkGoogle Scholar
  196. [196]
    Schmid J (1963) Kalktherapie bei Osteoporose. Schweiz med Wschr 93: 1815–1820PubMedGoogle Scholar
  197. [197]
    Schneider U, Banzer D, Bange M (1976) Comparison of bone mineral content (BMC) in different skeletal sites. Am J Roentgenol 126: 1312–1313Google Scholar
  198. [198]
    Schoknecht G (1963) Absorptionsmessungen an Röntgenkontrastmitteln mit monochromatischer Strahlung. Biophysik 1; 114–122Google Scholar
  199. [199]
    Schulz H (1980) Quantitative Knochenmineralgehaltsbestimmung mit der Quotien-tendensitometrie bei Patienten unter antikonvulsiver Langzeittherapie. Diss. Med. Fak Univ. KielGoogle Scholar
  200. [200]
    Shimmins J. Smith DA, Aitken M, Anderson JB, Gillespie FC (1972) The accuracy and reproducibility of bone mineral measurements in vivo. Clin Radiol 23: 47–51PubMedGoogle Scholar
  201. [201]
    Smith DA, Anderson JB, Shimmins J, Spiers CF, Barnett E (1970) Mineral and density changes in bone with age in normal and pathological states. In: Whedon GD, Cameron JR (eds) Progress in Methods of Bone Mineral Measurement. US Department of Health, Education, and Welfare, Washington D. C, pp 177–189Google Scholar
  202. [202]
    Smith DA, Nordin BEC (1964) The effect of calcium supplements on spinal density in osteoporosis. Proc first Europ Bone Tooth Symp. Pergamon Press, Oxford London New York Paris, pp 411–418Google Scholar
  203. [203]
    Smith DM, Johnston CC, Yu P-L (1972) In vivo measurement of bone mass. Its use in demineralized states such as osteoporosis. J Amer med Ass 219: 325–329Google Scholar
  204. [204]
    Smith FW, Hutchison JMS, Mallard JR, Johnson G, Redpath TW, Selbie RD, Reid A, Smith CC (1981) Oesophageal carcinoma demonstrated by whole-body nuclear resonance imaging. Br med J 282:510–512Google Scholar
  205. [205]
    Smith RW Jr, Frame B (1965) Concurrent axial and appendicular osteoporosis: its relationship to calcium consumption. New Engl J Med 273: 73–78PubMedGoogle Scholar
  206. [206]
    Spiers FW (1946) Effective atomic number and energy absorption in tissues. Br J Radiol 19: 52–63PubMedGoogle Scholar
  207. [207]
    Spinks TJ, Joplin GF, Evans JMA, Pennock J, Doyle FH, Ranicor ASO (1982) Long-term measurement of skeletal and lean body mass in Paget’s disease of bone treated with synthetic human calcitonin. Calcif Tissue Int 34: 459–464PubMedGoogle Scholar
  208. [208]
    Stadelmann H (1960) Kombinationsfilter zur Unterdrückung der Energieabhängigkeit von Dosisfilmen. Dissertation ErlangenGoogle Scholar
  209. [209]
    Stegemann H, Jung GF (1960) Ober die anorganische Knochensubstanz nach For-mamidaufschluß. Hoppe-Seylers Z physiol Chem 320: 272–276Google Scholar
  210. [210]
    Stieve F-E (1966) Kontrast und Schärfe im Röntgenbild der Lunge. In Stieve F-E Bildgüte in der Radiologie. Gustav Fischer, Stuttgart pp 217–246Google Scholar
  211. [211]
    Strüter H-D, Rassow J (1969) Über ein Verfahren zur quantitativen Bestimmung des Mineral Salzgehaltes der Knochen mit radioaktiven Isotopen. I. Mitteilung: Einisotopenmethode. Fortschr Röntgenstr 110: 499–506Google Scholar
  212. [212]
    Thurn P, Bücheler E (1979) Einführung in die Röntgendiagnostik. 6. Aufl. Georg Thieme, StuttgartGoogle Scholar
  213. [213]
    Torres A, Moya M (1982) A new method for the assessment of bone mass in renal osteodystrophy. Usefulness of computerized tomography in hemodialysis patients. Nephron 30: 231–236PubMedGoogle Scholar
  214. [214]
    Trotter M, Broman GE, Peterson RR (1959) Density of cervical vertebrae and comparison with densities of other bones. Am J phys Anthropol 17: 19–25PubMedGoogle Scholar
  215. [215]
    Trotter M, Peterson RR (1955) Ash weight of human skeletons in per cent of their dry, fat-free weight. Anat Rec 123: 341–358PubMedGoogle Scholar
  216. [216]
    Trotter M, Peterson RR (1962) The relationship of ash weight and organic weight of human skeletons. J Bone Jt Surg 44 A: 669–681Google Scholar
  217. [217]
    Turner ML, Dalinka MK (1979) Osteomalacia: uncommon causes. Am J Roentgenol 133: 539–540Google Scholar
  218. [218]
    Turnland J, Argen S, Briggs GM (1979) Effect of glucocorticoids and calcium intake on bone density and bone, liver and plasma minerals in guinea pigs. J Nutr 109: 1175–1188Google Scholar
  219. [219]
    Uehlinger E (1958) Zur Diagnose und Differentialdiagnose der Osteoporose. In: Schweiz med Jahrbuch. Schwabe, Basel, pp 39–48Google Scholar
  220. [220]
    Ullmann J, Brown S, Silverstein A, Vogel J (1973) Bone mineral computation with a rectilinear scanner. In: Mazess RB (ed) Int Conf Bone Mineral Measurement. DHEW Publ. No. (NIH) 75–683. US Department of Health, Education, and Welfare, Washington D.C., pp 130–141Google Scholar
  221. [221]
    Valvo (1963) Handbuch Speziairöhren I. Valvo GmbH, Druck Photocopie GmbH, HamburgGoogle Scholar
  222. [222]
    Vanselow K, Heuck F (1964) Theoretische Untersuchungen liber eine Meßmethode zur quantitativen Bestimmung des Wasser-Luft-Verhältnisses des Lungengewebes. Fortschr Röntgenstr 100: 441–453Google Scholar
  223. [223]
    Vanselow K, Heuck F, Piepgras U (1968) Theoretische Grundlagen einer Methode zur Messung der Gewebsdurchblutung am nicht narkotisierten Menschen. Fortschr. Röntgenstr. 108: 529–536Google Scholar
  224. [224]
    Vanselow K (1973) Fehlerquellen in der Densitometrie. In Heuck F (Hsrg) Densitometrie in der Radiologie. Georg Thieme, Stuttgart pp 66–84Google Scholar
  225. [225]
    Vanselow K, Heuck F (1975) Neue Grundlagen und Theorien zur Verbesserung der Angio-Cine-Densitometrie. I. Das physikalische Prinzip der Quo-tienten-Densitometrie. Fortschr Röntgenstr 122: 453–456Google Scholar
  226. [226]
    Vanselow K, Heuck F (1975a) Neue Grundlagen und Theorien zur Verbesserung der Angio-Cine-Densitometrie III Das zeitliche Auflösungsvermögen der Quotienten-Cine-Densitometrie. Fortschr. Röntgenstr. 123: 358–363Google Scholar
  227. [227]
    Vanselow K, Heuck F (1975b) Vergleichende Untersuchungen der physikalischtechnischen Grenzen der Video- und Cine-Densitometrie. Biomed. Technik 20: 86–91Google Scholar
  228. [228]
    Vanselow K, Heuck F, Deininger HK (1975) Neue Grundlagen und Theorien zur Verbesserung der Angio-Cine-Densitometrie IV Der Einfluß einer nichtkontinuierlichen, pulsierenden Strömung auf das Meßergebnis der Angio-Cine-Densitometrie. Fortschr. Röntgenstr. 123: 468–475Google Scholar
  229. [229]
    Vanselow K, Proppe D (1983) Problems of Different Methods of Radiographic Absorptiometry of Circulation. In Heuck FWH (Ed) Radiological Functional Analysis of the Vascular System. Springer Verlag Berlin Heidelberg New York pp 69–78Google Scholar
  230. [230]
    Vieth G (1974) Meßverfahren der Photograhie. R. Oldenbourg, München WienGoogle Scholar
  231. [231]
    Vinz H (1970) Untersuchungen über die Dichte, den Wasser- und den Mineralgehalt des kompakten menschlichen Knochengewebes in Abhängigkeit vom Alter. Gegenbaurs morph Jb 115: 273–283Google Scholar
  232. [232]
    Visser WJ, Niermans HJ, Roelofs JMM, Raymakers JA, Duursma SA (1977) Comparative morphometry of bone biopsies obtained by two different methods from the right and the left iliac crest. In: Meunier PJ (ed) Bone Histo-morphometry:Second International Workshop. Armour Montagu, Paris pp 79–87Google Scholar
  233. [233]
    Vogel JM (1973) Bone mineral changes in the Apollo astronauts. In: Mazess RB (ed) Int Conf Bone Mineral Measurement. DHEW Publication No. (NIH) 75–683. US Department of Health, Education, and Welfare, Washington D.C., pp 352–361Google Scholar
  234. [234]
    Vogel JM, Anderson JT (1972) Rectilinear transmission scanning of irregular bones for quantification of mineral content. J nucl Med 13: 13–18PubMedGoogle Scholar
  235. [235]
    Vogel JM, Whittle MW (1976a) Bone mineral changes: The second manned Skylab mission. Aviat Space Environ Med 47: 396–400PubMedGoogle Scholar
  236. [236]
    Vogel JM, Whittle MW (1976b) Bone mineral changes in the Skylab astronauts. Am J Roentgenol 126: 1296–1297Google Scholar
  237. [237]
    Vogl T, Frey KW, Rohloff R, Dörfler H (1981) Ergebnisse der Bestimmung des Mineral Salzgehaltes am peritheren Skelett bei Patienten mit Diabetes mellitus. Fortschr Röntgenstr 135: 38–40Google Scholar
  238. [238]
    Vogt FB, Meharg LS, Mack PB (1969) Use of a digital computer in the measurement of roentgenographic bone density. Am J Roentgenol 105: 870–876Google Scholar
  239. [239]
    Vogt JH (1949) Investigations on the bone chemistry of man. I. Ash content of the spongy substance of the iliac crest. Acta med scand 135: 221–230Google Scholar
  240. [240]
    Vose GP (1969) Estimation of changes in bone calcium content by radiographic densitometry. Radiology 93: 841–844Google Scholar
  241. [241]
    Vose GP (1974) Review of roentgenographs bone demineralization studies of the Gemini space flights. Am J Roentgenol 121: 1–4Google Scholar
  242. [242]
    Vose GP, Hurxthal LM (1969) X-ray density changes in the human heel during bed rest. Am J Roentgenol 106: 486–490Google Scholar
  243. [243]
    Vose GP, Keele DK (1970) Hypokinesia of bedfastness and its relationship to X-ray determind skeletal density. Tex Rep Biol Med 28: 123–131PubMedGoogle Scholar
  244. [244]
    Vose GP, Kubala AL (1959) Bone strength — its relationship to X-ray — determined ash content. Hum Biol 31: 261–270Google Scholar
  245. [245]
    Vose GP, Mack PB (1963) Roentgenologic assessment of femoral neck density as related to fracturing. Am J Roentgenol 89: 1296–1301Google Scholar
  246. [246]
    Vrana E, Schmidt T (1980) Strahlenbelastung der Patienten bei der Computertomographie. In: Messerschmidt O, Olbert F (eds) Nichtionisierende Strahlung: Anwendungen, Wirkungen, Schutzmaßnahmen. Strahlenbelastung bei speziellen diagnostischen und therapeutischen Eingriffen. Strahlenexposition bei der Computertomographie. (In: Strahlenschutz in Forschung und Praxis. Vol XX). Georg Thieme, Stuttgart New York, pp 157–176Google Scholar
  247. [247]
    Wachsmann F (1951) Dosisbelastung des Patienten bei röntgendiagnostisehen Untersuchungen. Fortschr Röntgenstr 75: 728–733Google Scholar
  248. [248]
    Wachsmann F (1959) Allgemeine Methodik der Röntgentherapie von Hautkrankheiten. In: Marchionini A, Schirren CG (eds) Strahlentherapie von Hautkrankheiten. (In: Marchionini A (ed) Handbuch der Haut- und Geschlechtskrankheiten. Ergänzungswerk, Vol 5/2). Springer, Berlin Göttingen Heidelberg, pp 181–288Google Scholar
  249. [249]
    Wachsmann F (1968) Strahlenschutzdosimetrie. In: Diethelm L, Olsson O, Strnad F, Vieten H, Zuppinger A (eds) Handbuch der medizinischen Radiologie. Vol I/1. Springer, Berlin Heidelberg New York, pp 559–617Google Scholar
  250. [250]
    Wachsmann F, Dimotsis A (1957) Kurven und Tabellen für die Strahlentherapie. S. Hirzel, Stuttgart, p 53Google Scholar
  251. [251]
    Wagner G (1959) Die Epilationsbestrahlung. In: Marchionini A, Schirren CG (eds) Strahlentherapie von Hautkrankheiten. (In: Marchionini A (ed) Handbuch der Haut- und Geschlechtskrankheiten. Ergänzungswerk, Vol 5/2). Springer, Berlin Göttingen Heidelberg, pp 655–746Google Scholar
  252. [252]
    Weidman SM, Rogers HJ (1950) Studies on the skeletal tissues. 1. The degree of calcification of selected mammalian bones. Biochem J 47: 493–497PubMedGoogle Scholar
  253. [253]
    Weidman SM, Rogers HJ (1958) Studies on the skeletal tissues. 5. The influence of age upon the degree of calcification and the incorporation of P in bone. Biochem J 69: 338–343Google Scholar
  254. [254]
    Weissenberg K (1916) Ober die Bedeutung des Einfallswinkels der Röntgenstrahlen. Fortschr Röntgenstr 24: 378–390Google Scholar
  255. [255]
    Whedon GD (1980) Changes of bone and calcium metabolism caused by space flight. In: Kuhlencordt F, Bartelheimer H (eds) Klinische Osteologie. (In:Schwiegk H (ed) Handbuch der inneren Medizin. 5. Aufl., Vol 6/1B). Springer, Berlin Heidelberg New York, pp 1245–1253Google Scholar
  256. [256]
    Whedon GD, Neumann WF, Jenkins DW (eds) (1966) Progress in Development of Methods in Bone Densitometry. NASA SP-64. National Aeronautics and Space Administration, Washington D.C.Google Scholar
  257. [257]
    Whitehouse WJ (1977) Cancellous bone in the anterior part of the iliac crest. Calcif Tissue Res 23: 67–76PubMedGoogle Scholar
  258. [258]
    Wilsey RB, Strangways DH, Corney GM (1956) Experiments in the photographic monotoring of stray X-rays. Part I. General considerations. The choice of film-calibrating radiations in Roentgen therapy at 220 KVp and 1000 KVp. Radiology 66: 408–417PubMedGoogle Scholar
  259. [259]
    Wilson CR (1973) Prediction of femoral neck and spine bone mineral content from the BMC of the radius or ulna and the relationship between bone strength and BMC. In: Mazess RB (ed) Int Conf Bone Mineral Measurement. DHEW Publication No. (NIH) 75–683. US Department of Health, Education, and Welfare, Washington D.C., pp 51–59Google Scholar
  260. [260]
    Witt RM (1973) Bone standards for the intercomparison and calibration of photon absorptiometry bone mineral measuring systems. In:Mazess RB (ed) Int Conf Bone Mineral Measurement. DHEW Publication No. (NIH) 75–683. US Department of Health, Education, and Welfare, Washington D.C., pp 114–122Google Scholar
  261. [261]
    Woodard HQ (1962) The elementary composition of human cortical bone. Hlth Phys 8: 513–517Google Scholar
  262. [262]
    Wray JB, Sugarman ED, Schneider AJ (1963) Bone composition in senile osteoporosis. A preliminary report. J Amer med Ass 183: 118–120Google Scholar
  263. [263]
    Zanzi I, Colbert C, Bachtell R, Thompson K, Aloia J, Cohn S (1978) Comparison of total-body calcium with radiographic photodensitometry of appendicular bone. Am J Roentgenol 131: 551Google Scholar
  264. [264]
    Zwicker H, Gebhardt M (1974) Systematische Fehler bei der Bestimmung des Knochenmineraläquivalents durch Absorptionsmessung monochromatischer Strahlen. Fortschr Röntgenstr 121: 87–89Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1984

Authors and Affiliations

  • Kurt Vanselow
    • 1
  • Dietfrid Proppe
    • 2
  1. 1.Instituts für angewandte PhysikUniversität KielKiel 1Deutschland
  2. 2.Abtlg. Spezielle Nephrologie und DialyseI. Medizinische Klinik der Universität KielKielDeutschland

Personalised recommendations