Advertisement

Geometrische Probleme beim VLSI-Design

  • Th. Ottmann
Chapter
Part of the Informatik-Fachberichte book series (INFORMATIK, volume 89)

Zusammenfassung

Beim Entwurf höchstintegrierter Schaltkreise, insbesondere bei der Analyse und Verifikation von Layouts, treten verschiedene geometrische Probleme auf. Wir erläutern diese Probleme zunächst sowie ihre Bedeutung und Stellung im Entwurisprozeß. Dann gehen wir auf die zur Lösung einiger geometrischer Grundaufgaben besonders geeignete Scan-Line Methode ein. Diese Methode wurde bisher vor allem für Manhattan-Geometrien benutzt. Wir zeigen am Beispiel des Problems, alle Paare sich schneidender Polygone zu bestimmen, wie eine Übertragung von Algorithmen auf den allgemeinen Fall möglich ist. Abschließend gehen wir auf Probleme ein, die mit der Datenhaltung zusammenhängen.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. [BHH]
    Bentley, J. L., Haken, D., and Hon, R. W.: Statistic on VLSI-designs Technical Report CMU-CS-80Google Scholar
  2. [BO]
    Bentley, J. L., and Ottmann, Th.: Algorithms for Reporting and Counting Geometric Intersections IEEE Transactions on Computers C-28 (1979), 643–647CrossRefGoogle Scholar
  3. [BOW]
    Bentley, J. L., Ottmann, Th., and Widmayer, P.: The Complexity of Manipulating Hierarchically Defined Sets of Rectangles Advances in Computing Research, vol.1, (1983), 127–158Google Scholar
  4. [BW]
    Bentley, J. L., and Wood, D.: An Optimal Worst Case Algorithm for Reporting Intersections of Rectangles, IEEE Transactions on Computers C-29 (1980), 563–580MathSciNetCrossRefGoogle Scholar
  5. [C]
    Chazelle, B.: Reporting and Counting Arbitrary Planar Intersections Brown University, Technical Report CS-83–16, June 1983Google Scholar
  6. [E]
    Edelsbrunner, H.: A Time- and Space-Optimal Solution for the Planar All Intersecting Rectangles Problem Technical University of Graz, Graz, Austria, Institut für Informationsverarbeitung, Report F50 (1980)Google Scholar
  7. [EvL]
    Edelsbrunner, H., and van Leeuwen, J.: Multidimensional Data Structures and Algorithms A Bibliography Bericht F104,IIG Graz, Jan. 1983Google Scholar
  8. [G]
    Güting, R. H.: An Optimal Contour Algorithm for Iso-Oriented Rectangles Journal of Algorithms (1983), to appearGoogle Scholar
  9. [H]
    Hon, R. W.: The Hierarchical Analysis of VLSI Designs Report CMU-CS-83–170, Dez. 1983Google Scholar
  10. [HL]
    Hofmann, M., and Lauther, U.: HEX: An Instruction-driven Approach to Feature Extraction Proceedings of the 20th Design Automation Conference (1983), 331–336Google Scholar
  11. [L]
    Lengauer, T.: Efficient Algorithms for the Constraint Generation for Integrated Circuit Layout Compaction Proceedings of the WG 1983, 219–230Google Scholar
  12. [L1]
    Lauther, U.: An O(N log N) Algorithm for Boolean Mask Operations Proceedings of the 18th Design Automation Conference (1981), 1–8Google Scholar
  13. [L2]
    Lauther, U.: A Data Structure for Gridless Routing Proceedings of the 17th Design Automation Conference (1980), 1–7Google Scholar
  14. [LiPr]
    Lipski, W. Jr., and Preparata, F. P.: Finding the Contour of a Union of Iso-Oriented Rectangles Journal of Algorithms 1 (1980), 235–246MathSciNetCrossRefGoogle Scholar
  15. [LT]
    Losleben, P., and Thompon, K.: Topological Analysis for VLSI Circuits Proceedings of the 16th Design Automation Conference, (1979), 461–473Google Scholar
  16. [MC]
    Mead, C. A., and Conway, L.: Introduction to VLSI Systems Addison Wesley, 1980Google Scholar
  17. [McC]
    McCreight, E. M.: Efficient Algorithms for Enumerating Intersecting Intervals and Rectangles XEROX Palo Alto Research Center, Palo Alto, California; Report CSL-81–5 (1980)Google Scholar
  18. [OW1]
    Ottmann, Th., and Widmayer, P.: On the Placement of Line Segments into a Skeleton Structure Report Nr. 117, Institut für Angewandte Informatik und Formale Beschreibungsverfahren, University of Karlsruhe, 1984Google Scholar
  19. [OW2]
    Ottmann, Th., and Widmayer, P.: Solving Visibility Problems by Using Skeleton Structures Proceedings MFCS 1984, Prag, to appearGoogle Scholar
  20. [OWo]
    Ottmann, Th., and Wood, D.: The Contour Problem for Polygons University of Waterloo, Computer Science Technical Report, 1984Google Scholar
  21. [Sh]
    Shamos, M. I.: Computational Geometry Yale University, New Haven, Connecticut; Ph. D. Thesis, 1978Google Scholar
  22. [SL]
    Swart, G., and Ladner, R.: Efficient Algorithms for Reporting Intersections Technical Report No. 83–07–03, Computer Science Department, University of Washington, Seattle, 1983Google Scholar
  23. [SLMLW]
    Schlag, M., Luccio, F., Maestrini, P., Lee, D. T., and Wong, C.K.: A Visibility Problem in VLSI Layout Compaction IBM Research Report, 1983Google Scholar
  24. [SVW]
    Szymanski, T. G., and Van Wyk, C. J.: Space Efficient Algorithms for VLSI Artwork Analysis Proceedings of the 20th Design Automation Conference (1983), 734–739Google Scholar
  25. [U]
    Ullmann, J. D.: Computational Aspects of VLSI Rockville, Maryland, USA, 1984Google Scholar
  26. [W]
    Wilmore, J. A.: Efficient Boolean Operations on IC Masks Proceedings of the 18th Design Automation Conference (1981), 571–579Google Scholar
  27. [We]
    Weise, D.: Hierarchical Analysis Tools in an Interactive Environment ICCC 1982, 526–529Google Scholar
  28. [Wo]
    Wood, D.: An Isothetic View of Computational Geometry University of Waterloo, Report CS-84–01, Jan. 1984Google Scholar
  29. [Wo2]
    Wood, D.: The Contour Problem for Rectilinear Polygons University of Waterloo, Computer Science Technical Report CS-83–20 (1983)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1984

Authors and Affiliations

  • Th. Ottmann
    • 1
  1. 1.Institut für Angewandte Informatik und Formale BeschreibungsverfahrenUniversität KarlsruheKarlsruheDeutschland

Personalised recommendations