Advertisement

VLSI-Realisierungen von Sortieralgorithmen

  • Heiko Schröder
Part of the Informatik-Fachberichte book series (INFORMATIK, volume 89)

Zusammenfassung

Die Entwicklung der VLSI-Technologie erlaubt im Vergleich zu früheren Technologien einen nahezu unbegrenzten Parallelitätsgrad. Entscheidend für die Bewertung von Algorithmen, die mit Hilfe der VLSI-Technologie implementiert werden sollen, ist das Hardware-Modell, auf das sich die Algorithmenanalyse stützt. Alle aus der Literatur bekannten Modelle betrachten ein VLSI-chip als einen G-raphen, dessen Knoten Recheneinheiten (z.B. Addierer, Vergleicher mit wenigen Registern) und dessen Kanten Verbindungsleitungen sind.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. [AS]
    Akl, S.G., Schmeck, H.: Systolic Sorting in a Sequential Input/Output Environment, T.R. No. 84–154, Department of Computing and Information Science, Queens University, 1984Google Scholar
  2. [BPP]
    Bilardi, G. Pracchi, M., Preparata, P.P.: A Critique and an Appraisal of VLSI Models of Computation. In: Kung, H.T., Sproull, B., Steele, G. (eds.): VLSI Systems and Computations, Springer Verlag, 81–88 (1981)CrossRefGoogle Scholar
  3. [CM1]
    Chazelle, B.M., Monier, L.M.: A Model of Computation for VLSI with Related Complexity Results. Proc. 13th Symp. Theory of Computing, 318–325 (1981)Google Scholar
  4. [CM2]
    Chazelle, B.M., Monier, L.M.: Optimality in VLSI. In: Gray, J.P. (ed): VLSI 81, Academic Presse, London, 269–278 (1981)Google Scholar
  5. [PK]
    Foster, M.J., Kung, H.T.: The design of special purpose VLSI chips, Computer Magazine 13, pp.26–40,1980Google Scholar
  6. [KH]
    Kumar, M., Hirschberg, D.S., An efficient implementation of Batcher’s odd-even merge algorithm and its application in parallel sorting schemes, IEEE Trans.Comptrs. C-32, 254–264 (1983)CrossRefGoogle Scholar
  7. [KT]
    Kung, H.T., Thompson, C.B., Sorting on a Mesh-Connected Parallel Computer, CACM, Vol, 20, 263–271 (1977)MathSciNetzbMATHGoogle Scholar
  8. [LCW]
    Lee, D.T., Chang, H., Wong, C.K.: An On-Chip Compare/Steer Bubble Sorter, IEEE Trans.Comptrs, vol, C-30, pp. 396–404, 1981MathSciNetCrossRefGoogle Scholar
  9. [M]
    Mangir, T.E., Impact and Limitations of Interconnect Technology. IEEE international Conference on Computer Design: VLSI in Computers, s 735–739 (1983)Google Scholar
  10. [MC]
    Mead, G., Conway, L.: Introduction to VLSI Systems. Addison-Wesley, Reading, MA 1980Google Scholar
  11. [NMB]
    Nath, D.D., Maheshwari, S.N., Bhatt, P.C.P., Efficient VLSI-Networks for Parallel Processing Based on Orthogonal Trees, IEEE Trans. Comptrs., vol. C-32, pp 569–581, 1983CrossRefGoogle Scholar
  12. [R]
    Rudolph, L.: A Robust Sorting Network, Proc, Conf. on Advanced Research in VLSI, MIT, Januar 1984Google Scholar
  13. [S]
    Schröder, H., Partition Sorts for VLSI, Informatik-Pachberichte 73, S. 101–116, 1983Google Scholar
  14. [SWM]
    Shin, H., Melch, A.J., Malek, M.: I/O Overlapped Sorting Schemes for VLSI, IEEE International Conference on Computer Design: VLSI in Computers, 1983Google Scholar
  15. [T1]
    Thompson, C.D.: Area-Time Complexity for VLSI. Proc. 11th Symp. Theory of Computing 81–88 (1979)Google Scholar
  16. [T2]
    Thompson, C.D., Raghavan, P.: On Estimating the Performance of VLSI Circuits, Proc. Conf. on Advanced Research in VLSI, MIT, Januar 1984Google Scholar
  17. [T3]
    Thompson, C.D.: The VLSI Complexity of Sorting, IEEE Trans. Comptrs, vol. C-32, pp 1171–1184, 1983CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1984

Authors and Affiliations

  • Heiko Schröder
    • 1
  1. 1.Institut für Informatik u.P.M.Universität KielDeutschland

Personalised recommendations