Skip to main content

References

  • Chapter
  • 40 Accesses

Part of the book series: Advances in Anatomy Embryology and Cell Biology ((ADVSANAT,volume 93))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abney ER, Bartlett PF, Raff MC (1981) Astrocytes, ependymal cells, and oligodendrocytes develop on schedule in dissociated cell cultures of embryonic rat brain. Dev Biol 83: 301–310

    Article  PubMed  CAS  Google Scholar 

  • Antanitus DS, Choi BH, Lapham LW (1976) The demonstration of glial fibrillary acidic protein in the cerebrum of the human fetus by indirect immunofluorescence. Brain Res 103: 613–616

    Article  PubMed  CAS  Google Scholar 

  • Aström K-E (1967) On the early development of the isocortex in fetal sheep. Progr Brain Res 26: 1–58

    Article  Google Scholar 

  • Balcar VJ, Dammasch I, Wolff JR (1983) Is there a non-synaptic component in the K+ -stimulated release of GABA in the developing rat cortex? Dev Brain Res 10: 309–311

    Article  CAS  Google Scholar 

  • Bär Th, Wolff JR (1972) The formation of capillary basement membranes during internal vascularization of the rat’s cerebral cortex. Z Zellforsch 133: 231–248

    Article  PubMed  Google Scholar 

  • Bartlett PF, Noble MD, Pruss RM, Raff MC, Rattray S, Williams CA (1980) Rat neural antigen-2 (Ran-2): A cell surface antigen on astrocytes, ependymal cells, Müller cells and lepto-meninges defined by a monoclonal antibody. Brain Res 204: 339–351

    Google Scholar 

  • Basco E (1981) Regional distribution and time course of mitotic activity of astroglia in the immature mouse forebrain. Acta Morphol Acad Sci Hung 29: 203–211

    PubMed  CAS  Google Scholar 

  • Berry M, Rogers AW (1965) The migration of neuroblasts in the developing cerebral cortex. J Anat 99: 691–709

    PubMed  CAS  Google Scholar 

  • Berry M, Rogers AW (1966) Histogenesis of mammalian neocortex. In: Hassler R, Stephan H (eds) Evolution of the forebrain. Plenum, New York, pp 197–205

    Google Scholar 

  • Bignami A, Dahl D (1974a) Astrocyte-specific protein and neuroglial differentiation. An immunofluorescence study with antibodies to glial fibrillary acidic protein. J Comp Neurol 153: 27–38

    Google Scholar 

  • Bignami A, Dahl D (1974b) Astrocyte-specific protein and radial glia in the cerebral cortex of newborn rat. Nature 252: 55–56

    Article  PubMed  CAS  Google Scholar 

  • Bignami A, Raju T, Dahl D (1982) Localization of vimentin, the nonspecific intermediate filament protein, in embryonal glia and in early differentiating neurons. In vivo and in vitro immunofluorescence study of the rat embryo with vimentin and neurofilament anti-sera. Dev Biol 91: 286–295

    Google Scholar 

  • Blakemore WF (1969) The ultrastructure of the subependymal plate in the rat. J Anat 104: 423–433

    PubMed  CAS  Google Scholar 

  • Blakemore WF, Jolly RD (1972) The subependymal plate and associated ependyma in the dog: An ultrastructural study. J Neurocytol 1: 69–84

    Google Scholar 

  • Blenkinsopp WN (1968) Duration of availability of tritiated thymidin following intraperitoneal injection. J Cell Sci 3: 91–95

    Google Scholar 

  • Boulder Committee (1970) Embryonic vertebrate central nervous system: revised terminology. Anat Rec 166: 257–262

    Article  Google Scholar 

  • Bradford R, Parnavelas JG, Lieberman AR (1977) Neurons in layer I of the developing occipital cortex of the rat. J Comp Neurol 176: 121–132

    Article  PubMed  CAS  Google Scholar 

  • Brückner G, Mares V, Biesold D (1976) Neurogenesis in the visual system of the rat. An autoradiographic investigation. J Comp Neurol 166: 245–256

    Google Scholar 

  • Butler AB, Caley DW (1972) An ultrastructural and radiographic study of the migrating neuroblast in the hamster neocortex. Brain Res 44: 83–97

    Article  PubMed  CAS  Google Scholar 

  • Cajal Ramon y S (1891) Sur la structure de l’écorce cérébrale de quelques mammifères. La Cellule 7: 125–176

    Google Scholar 

  • Cajal Ramon y S (1959) Studies on vertebrate neurogenesis (Translated by L. Guth). Thomas, Springfield Ill

    Google Scholar 

  • Caley DW, Maxwell DS (1968a) An electron microscopic study of neurons during postnatal development of the rat cerebral cortex. J Comp Neurol 133: 17–44

    Article  PubMed  CAS  Google Scholar 

  • Caley DW, Maxwell DS (1968b) An electron microscopic study of the neuroglia during postnatal development of the rat cerebrum. J Comp Neurol 133: 45–70

    Article  PubMed  CAS  Google Scholar 

  • Choi BH (1981) Hematogenous cells in the central nervous system of developing human embryos and fetuses. J Comp Neurol 196: 683–694

    Article  PubMed  CAS  Google Scholar 

  • Choi BH, Lapham LW (1978) Radial glia in the human fetal cerebrum: a combined Golgi, immunofluorescent and electron microscopic study. Brain Res 148: 295–311

    Article  PubMed  CAS  Google Scholar 

  • Chronwall B, Wolff JR (1980) Prenatal and postnatal development of GABA-accumulating cells in the occipital neocortex of rat. J Comp Neurol 190: 187–208

    Article  PubMed  CAS  Google Scholar 

  • Chronwall BM, Wolff JR (1981) Non-pyramidal neurons in early developmental stages of the rat neocortex. Bibl Anat 19: 147–151

    PubMed  Google Scholar 

  • Dahl D, Rueger DC, Bignami A, Weber K, Osborn M (1981) Vimentin, the 57000 molecular weight protein of fibroblast filaments, is the major cytoskeletal component in immature Glia. Eur J Cell Biol 24: 191–196

    PubMed  CAS  Google Scholar 

  • Das GD (1979) Gliogenesis and ependymogenesis during embryonic development of the rat: An autoradiographic study. J Neurol Sci 43: 193–204

    Article  PubMed  CAS  Google Scholar 

  • Davison AN, Cuzner ML, Banik NL, Oxberry J (1966) Myelinogenesis in the rat brain. Nature 212: 1373–1374

    Article  PubMed  CAS  Google Scholar 

  • DeBault LE (1981) γ-Glutamyltranspeptidase induction mediated by glial foot process-to endothelium contact in co-culture. Brain Res 220:432–435

    Article  Google Scholar 

  • DeVitry F, Picart R, Jacque C, Legault L, Dupouey P, Tixier-Vidal A (1980) Presumptive common precursor for neuronal and glial cell lineages in mouse hypothalamus. Proc Natl Acad Sci USA 77: 4165–4169

    Article  CAS  Google Scholar 

  • Decker M, Friend D (1974) Assembly of gap junctions during amphibian neurolation. J Cell Biol 62: 32–47

    Article  PubMed  CAS  Google Scholar 

  • Derer P, Caviness VS, Sidman RL Jr (1977) Early cortical histogenesis in the primary olfactory cortex of the mouse. Brain Res 123: 27–40

    Article  PubMed  CAS  Google Scholar 

  • Dräger UC (1983) Coexistance of neurofilaments and vimentin in a neurone of adult mouse retina. Nature 303: 169–172

    Article  PubMed  Google Scholar 

  • Eng LF, Bigbee JW (1978) Immunohistochemistry of nervous system-specific antigens. Adv Neurochem 3: 43–98

    CAS  Google Scholar 

  • Eng LF, DeArmond SJ (1981) Glial fibrillary acidic ( GFA) protein immunocytochemistry in development and neuropathology. Prog Clin Biol Res 59A: 65–79

    Google Scholar 

  • Eng LF, Vanderhaeghen JJ, Bignami A, Gerstl B (1971) An acidic protein isolated from fibrous astrocytes. Brain Res 28: 351–354

    Article  PubMed  CAS  Google Scholar 

  • Fisher S, Jacobson M (1970) Ultrastructural changes during early development of retinal ganglion cells in xenopus. Z Zellforsch 104: 165–177

    Article  PubMed  CAS  Google Scholar 

  • Fox GQ, Pappas GD, Purpura DP (1976) Morphology and fine structure of the feline neonatal medullary raphe nuclei. Brain Res 101: 385–410

    Article  PubMed  CAS  Google Scholar 

  • Fujisawa H, Marioka H, Watanabe K, Nakamura H (1976) A decay of gap junctions in association with cell differentiation of the neural retina in chick embryonic development. J Cell Sci 22: 585–596

    PubMed  CAS  Google Scholar 

  • Fujita H, Fujita S (1964) Electron microscopic studies on the differentiation of the ependymal cells and the glioblast in the spinal cord of domestic fowl. Z Zellforsch 64: 262–272

    Google Scholar 

  • Fujita S (1963) The matrix cell and cytogenesis in the developing central nervous system. J Comp Neurol 120: 37–43

    Article  PubMed  CAS  Google Scholar 

  • Fujita S (1965a) An autoradiographic study on the origin and fate of the subpial glioblast in the embryonic chick spinal cord. J Comp Neurol 124: 51–60

    Article  PubMed  CAS  Google Scholar 

  • Fujita S (1965 b) The matrix cell and histogenesis of the central nervous system. Laval Med 36:125–130

    CAS  Google Scholar 

  • Fujita S (1966) Application of light and electron microscopic autoradiography to the study of cytogenesis in the forebrain. In: Hassler R, Stephan H (eds) Evolution of the forebrain. Plenum, New York, pp 180–196

    Google Scholar 

  • Fujita S (1973) Genesis of glioblasts in the human spinal cord as revealed by feulgen cytophotometry. J Comp Neurol 151: 25–34

    Article  PubMed  CAS  Google Scholar 

  • Fujita S (1980) Cytogenesis and pathology of neuroglia and microglia. Pathol Res Pract 168: 271–278

    PubMed  CAS  Google Scholar 

  • Fulcrand J, Bisconte J, Marty R (1968) Clearance plasmatique et élimination urinaire de la thymidine marquée et de ses metabolites. CR Soc Biol (Paris) 162: 1584–1588

    CAS  Google Scholar 

  • Ghandour MS, Langley OK, Labourdette G, Vincendon G, Gombos G (1981) Specific and artifactual localizations of 5100 protein: An astrocyte marker in rat cerebellum. Dev Neurosci 4: 66–78

    Google Scholar 

  • Gheuens J, Noppe M, Karcher D, Lowenthal A (1980) Immunochemical determination and immunocytological localization of brain-specific protein a-albumin ( GFA) in isolated astrocytes. Neurochem Res 5: 757–768

    Google Scholar 

  • Globus JH, Kuhlenbeck H (1944) The subependymal cell plate (matrix) and its relationship to brain tumors of the ependymal type. J Neuropathol Exp Neurol 3: 1–35

    Article  Google Scholar 

  • Gombos G, Filipowicz W, Vincendon G (1971) Fast and slow components of S-100 protein fraction: Regional distribution in bovine central nervous systems. Brain Res 26: 475–479

    Google Scholar 

  • Güldner FH, Wolff JR (1973) Neurono-glial synaptoid contacts in the median eminence of the rat: Ultrastructure, staining properties and distribution on tanycytes. Brain Res 61: 217–234

    Google Scholar 

  • Hajos F, Woodhams PL, Basco E, Csillag A, Balazs R (1981) Proliferation of astroglia in the embryonic mouse forebrain as revealed by simultaneous immunocytochemistry and autoradiography. Acta Morphol Acad Sci Hung 29: 361–364

    PubMed  CAS  Google Scholar 

  • Harris AL, Spray DC, Bennett MVL (1983) Control of intercellular communication by voltage dependence of gap junctional conductance. J Neurosci 3: 79–100

    PubMed  CAS  Google Scholar 

  • Hatten ME, Liem RKH (1981) Astroglial cells provide a template for the positioning of developing cerebellar neurons in vitro. J Cell Biol 90: 622–630

    Article  PubMed  CAS  Google Scholar 

  • Haug H (1972) Die postnatale Entwicklung der Gliadeckschicht der Sehrinde der Katze. Z Zellforsch 123: 544–565

    Article  PubMed  CAS  Google Scholar 

  • Hendrikson CK, Vaughn JE (1974) Fine structural relationship between neurites and radial glial processes in developing mouse spinal cord. J Neurocytol 3: 659–675

    Article  Google Scholar 

  • Hinds JW (1972a) Early neuron differentiation in the mouse olfactory bulb. I. Light microscopy. J Comp Neurol 146: 233–252

    Article  PubMed  CAS  Google Scholar 

  • Hinds JW (1972b) Early neuron differentiation in the mouse olfactory bulb. II. Electron microscopy. J Comp Neurol 146: 253–276

    Article  PubMed  CAS  Google Scholar 

  • Hinds JW, Hinds PL (1974) Early ganglion cell differentiation in the mouse retina: An electron microscopic analysis utilizing serial sections. Dev Biol 37: 381–416

    Google Scholar 

  • Hinds JW, Hinds PL (1978) Early development of amacrine cells in the mouse retina: An electron microscopic serial section analysis. J Comp Neurol 179: 277–300

    Google Scholar 

  • Hinds JW, Hinds PL (1979) Differentiation of photoreceptors and horizontal cells in the embryonic mouse retina: An electron microscopic serial section analysis. J Comp Neurol 187: 495–512

    Google Scholar 

  • Hinds JW, Ruffet TL (1971) Cell proliferation in the neural tube: An electron microscopic and Golgi analysis in the mouse cerebral vesicle. Z Zellforsch 115: 226–264

    Google Scholar 

  • His W (1889) Die Neuroblasten and deren Entstehung im embryonalen Mark. Abhandl Math Phys Kl Königl Sächs Ges Wiss 26: 313–372

    Google Scholar 

  • His W (1890) Histogenese and Zusammenhang der Nervenelemente. Arch Anat Physiol (Suppl) 95: 95–117

    Google Scholar 

  • His W (1904) Die Entwicklung des menschlichen Gehirns während der ersten Monate. Hirzel, Leipzig

    Google Scholar 

  • Holmes RL, Berry M (1966) Electron microscopic studies on developing foetal cerebral cortex of the rat. In: Hassler R, Stephan H (eds) Evolution of the Forebrain. Plenum, New York, pp 206–212

    Google Scholar 

  • Hosokawa H, Mannen H (1963) General aspects of the histology of neuroglia. In: Nakai J (ed) Morphology of neuroglia. Igaku Shoin, Japan, pp 1–52

    Google Scholar 

  • Imamoto K, Paterson JA, Leblond CP (1978) Radioautographic investigation of gliogenesis in the corpus callosum of young rats. I. Sequential changes in oligodendrocytes. J Comp Neurol 180: 115–138

    Google Scholar 

  • Jacobson M (1978) Developmental neurobiology, 2nd edn. Plenum, New York

    Google Scholar 

  • Jacque C, Lachapelle F, Collier P, Raoul M, Baumann N (1980) Accumulation of GFA, the monomeric precursor of gliofilaments during development in normal mice and dysmyelinating mutants. J Neurosci Res 5: 379–385

    Article  PubMed  CAS  Google Scholar 

  • Juurlink BHJ, Fedoroff S, Hall C, Nathaniel EJH (1981) Astrocyte cell lineage. I. Astrocyte progenitor cells in mouse neopallium. J Comp Neurol 200: 375–391

    Google Scholar 

  • Kalt MR, Tandler B (1971) A study of fixation of early amphibian embryos for electron microscopy. J Ultrastruct Res 36: 633–645

    Article  PubMed  CAS  Google Scholar 

  • Kaplan MS, Hinds JW (1977) Neurogenesis in the adult rat: An electron microscopic analysis of light radioautographs. Science 197: 1092–1094

    Google Scholar 

  • Kaplan MS, Hinds JW (1980) Gliogenesis of astrocytes and oligodendrocytes in the neocortical grey and white matter fo the adult rat: Electron microscopic analysis of light autoradio-graphs. J Comp Neurol 193: 711–727

    Google Scholar 

  • Kelly JS, Dick F (1975) Differential labelling of glial cells and GABA-inhibitory interneurons and nerve terminals following the injection of (β-3H)-Alanin, (3H)-DABA and (3H)-GABA into single folia of the cerebrellum. Cold Spring Harbour Symp Quant. Biol 40: 93–106

    Google Scholar 

  • Koelliker A (1896) Handbuch der Gewerbelehre des Menschen. II. Nervensystem des Menschen und der Thiere, 6th edn. Engelmann, Leipzig

    Google Scholar 

  • König N, Marty R (1981) Early neurogenesis and synaptogenesis in cerebral cortex. Bibl Anat 19: 152–160

    PubMed  Google Scholar 

  • König N, Schachner M (1981) Neuronal and glial cells in the superficial layers of early postnatal mouse neocortex: Immunofluorescence observations. Neurosci Lett 26: 227–231

    Google Scholar 

  • König N, Roch G, Marty R (1975) The onset of synaptogenesis in rat temporal cortex. Anat Embryol 148: 73–87

    Article  PubMed  Google Scholar 

  • König N, Valat J, Fulcrand J, Marty R (1977) The time of origin of Cajal-Retzius cells in the rat temporal cortex. An autoradiographic study. Neurosci Lett 4: 21–26

    Google Scholar 

  • König N, Hornung J-P, Van der Loos H (1981) Identification of Cajal-Retzius cells in immature rodent cerebral cortex: A combined Golgi-EM study. Neurosci Lett 27: 225–229

    Google Scholar 

  • Korr H (1980) Proliferation of different cell types in the brain. Adv Anat Embryol Cell Biol 61

    Google Scholar 

  • Korr H, Schultze B, Maurer W (1973) Autoradiographic investigations of glial proliferation in the brain of adult mice. I. The DNA synthesis phase of neuroglia and endothelial cells. J Comp Neurol 150: 169–176

    Google Scholar 

  • Korr H, Schultze B, Maurer W (1975) Autoradiographic investigations of glial proliferation in the brain of adult mice. II. Cycle time and mode of proliferation of neuroglia and endothelial cells. J Comp Neurol 160: 477–490

    Google Scholar 

  • Kostovie I, Molliver ME (1974) A new interpretation of the laminar development of cerebral cortex: Synaptogenesis in different layers of neopallium in the human fetus. Anat Rec 178: 395

    Google Scholar 

  • Kostovié I, Molliver ME, Van Der Loos H (1973) The laminar distribution of synapses in neocortex of fetal dog. Anat Rec 175: 362

    Google Scholar 

  • Lagenaur C, Sommer I, Schachner M (1980) Subclass of astroglia in mouse cerebellum recognized by monoclonal antibody. Dev Biol 79: 367–378

    Article  PubMed  CAS  Google Scholar 

  • La Velle A (1956) Nuclear and Nissl substance development in nerve cells. J Comp Neurol 104: 175–206

    Article  Google Scholar 

  • La Velle A, La Velle FW (1970) Cytodifferentiation in the neuron. In: Himwich WA (ed) Developmental neurobiology. Thomas, Springfield Ill, pp 117–164

    Google Scholar 

  • Leibnitz L (1981) Morphologische Untersuchungen der Mikrogliazellen im visuellen Kortex der adulten Ratte unter besonderer Berücksichtigung ihrer Kontakte zu anderen Gewebestrukturen. Z Mikrosk Anat Forsch 95: 304–309

    PubMed  CAS  Google Scholar 

  • Levinthal C, Ware R (1972) Three dimensional reconstruction from serial sections. Nature 236: 207–212

    Article  Google Scholar 

  • Levitt P, Rakic P (1980) Immunoperoxidase localization of glial fibrillary acidic protein in radial glial cells and astrocytes of the developing rhesus monkey brain. J Comp. Neurol 193: 815–840

    Google Scholar 

  • Levitt P, Cooper ML, Rakic P (1981) Coexistence of neuronal and glial precursor cells in the cerebral ventricular zone of the fetal monkey: An ultrastructural immunoperoxidase analysis. J Neurosci 1: 27–39

    Google Scholar 

  • Levitt P, Cooper ML, Rakic P (1983) Early divergence and changing properties of neuronal and glial precursor cells in the primate cerebral ventricular zone. Dev Biol 96: 472–484

    Article  PubMed  CAS  Google Scholar 

  • Lewis PD (1975) Cell death in the germinal layers of the postnatal rat brain. Neuropathol. Appl Neurobiol 1: 21–29

    Article  Google Scholar 

  • Lewis PD, Lai M (1974) Cell generation in the subependymal layer of the rat brain during early postnatal period. Brain Res 77: 520–525

    Article  Google Scholar 

  • Ling EA, Leblond CP (1973) Investigation of glial cells in semithin sections. II. Variation with age in the number of various glial cell types in the rat cortex and corpus callosum. J Comp Neurol 149: 73–82

    Google Scholar 

  • Linser P, Moscona AA (1981) Carbonic anhydrase C in the neural retina: Transition from generalized to glia-specific cell localization during embryonic development. Proc Natl Acad Sci USA 78: 7190–7194

    Google Scholar 

  • Loewenstein WR (1973) Membrane junctions in growth and differentiation. Fed Proc 32: 60–64

    PubMed  CAS  Google Scholar 

  • Loewenstein WR (1975) Permeable junctions. Cold Spring Harbour Symp Quant Biol 40: 49–63

    Google Scholar 

  • Lyser KM (1964) Early differentiation of motor neuroblasts in the chick embryo as studied by electron microscopy. I. General aspects. Dev Biol 10: 433–466

    Article  PubMed  CAS  Google Scholar 

  • Lyser KM (1968 a) Early differentiation of motor neuroblasts in the chick embryo as studied by electron microscopy. II. Microtubules and neurofilaments. Dev Biol 17: 117–142

    Article  CAS  Google Scholar 

  • Lyser KM (1968 b) An electron microscope study of centrioles in differentiating motor neuro-blasts. J Embryol Exp Morphol 20:343–354

    CAS  Google Scholar 

  • Marangos PJ, Schmechel D (1980) The neurobiology of the brain enolases. Essay Neurochem Neuropharmacol 4: 211–247

    CAS  Google Scholar 

  • Marin-Padilla M (1971) Early prenatal ontogenesis of the cerebral cortex (neocortex) of the cat (Felis domestica) A Golgi study. I. The primordial neocortical organization. Z Anat Entwicklungsgesch 134: 117–145

    Article  PubMed  CAS  Google Scholar 

  • Marin-Padilla M (1972) Prenatal ontogenetic history of the principal neurons of the neocortex of the cat (Felis domestica). A Golgi study. II. Developmental differences and their significances. Z Anat Entwicklungsgesch 136: 125–142

    Article  PubMed  CAS  Google Scholar 

  • Marin-Padilla M (1978) Dual origin of mammalian neocortex and evolution of the cortical plate. Anat Embryol 152: 109–126

    Article  PubMed  CAS  Google Scholar 

  • Marin-Padilla M, Marin-Padilla TM (1982) Origin, prenatal development and structural organization of layer I of the human cerebral cortex. Anat Embryol 164: 161–206

    Article  PubMed  CAS  Google Scholar 

  • Meller K, Breipohl W, Glees P (1966a) Early cytological differentiation in the cerebral hemisphere of mice. An electron microscopical study. Z Zellforsch 72: 525–533

    Google Scholar 

  • Meller K, Eschner J, Glees P (1966b) The differentiation of endoplasmic reticulum in developing neurons of the chick spinal cord. Z Zellforsch 69: 169–197

    Article  Google Scholar 

  • Molliver ME, Kostovie I, Van Der Loos H (1973) The development of synapses in cerebral cortex of the human fetus. Brain Res 50: 403–407

    Article  PubMed  CAS  Google Scholar 

  • Mori S, Leblond CP (1969) Electron microscopic features and proliferation of astrocytes in the corpus callosum of rat. J Comp Neurol 137: 197–226

    Article  PubMed  CAS  Google Scholar 

  • Nosal G, Radouco-Thomas C (1971) Ultrastructural study on the differentiation and develop- ment of the nerve cell; the “Nucleus-Ribosome” system. Adv Cytopharmacol. 1: 433–456

    PubMed  CAS  Google Scholar 

  • Nowakovski RS, Rakic P (1979) The mode of migration of neurons to the hippocampus: A Golgi and electron microscopic analysis in foetal rhesus monkey. J Neurocytol 8: 697–718

    Google Scholar 

  • Oppenheim RW, Chu-Wang I-W, Maderdrut JL (1978) Cell death of motorneurons in the chick embryo spinal cord. III. The differentiation of motorneurons prior to their induced degeneration following limb bud removal. J Comp Neurol 177: 87–112

    Google Scholar 

  • Palay SL, Chan-Palay V (1974) Cerebellar cortex. Springer, Berlin Heidelberg New York, p 333

    Chapter  Google Scholar 

  • Palay S, Sotelo C, Peters A, Orkand PM (1968) The Axon Hillock and the initial segment. J Cell Biol 38: 193–201

    Article  PubMed  CAS  Google Scholar 

  • Pannese E (1974) The histogenesis of the spinal ganglia. Adv Anat Embryol Cell Biol 47: Fasc 5

    Google Scholar 

  • Paterson JA, Privat A, Ling EA, Leblond CP (1973) Investigation of glial cells in semithin sections. III. Transformation of subependymal cells into glial cells, as shown by radioautography after 3H-thymidin injection into the lateral ventricle of the brain of young rats. J Comp Neurol 149: 83–102

    Article  PubMed  CAS  Google Scholar 

  • Peters A, Feldman M (1973) The cortical plate and the molecular layer of the late rat fetus. Z Anat Entwicklungsgesch 141: 3–37

    Article  PubMed  CAS  Google Scholar 

  • Peters A, Palay SL, de F Webster H (1976) The fine structure of the nervous system: The neurons and supporting cells. Saunders, Philadelphia

    Google Scholar 

  • Phillips DE (1973) An electron microscopic study of macroglia and microglia in the lateral funiculus of the developing spinal cord in the fetal monkey. Z Zellforsch 140: 145–167

    Article  PubMed  CAS  Google Scholar 

  • Polak M (1965) Morphological and functional characteristics of the central and peripheral neuroglia (light microcopical observations). Prog Brain Res 15: 12–34

    Article  PubMed  CAS  Google Scholar 

  • Potter DD, Furshpan EJ, Lennoy ES (1966) Connections between cells of the developing squid as revealed by electrophysiological methods. Proc Natl Acad Sci USA 55: 328–336

    Article  PubMed  CAS  Google Scholar 

  • Privat A (1975) Postnatal gliogenesis in the mammalian brain. Int Rev Cytol 40: 281–324

    Article  PubMed  CAS  Google Scholar 

  • Privat A (1978) Morphological approaches to the problems of neuroglia. In: Schoffeniels E, Frank G, Hertz L, Tower DB (eds) Dynamic properties of glial cells. Pergamon, New York, pp 55–64

    Google Scholar 

  • Privat A, Leblond CP (1972) The subependymal layer and neighboring region in the brain of the young rat. J Comp Neurol 146: 277–302

    Article  PubMed  CAS  Google Scholar 

  • Puelles L, Bendala MC (1978) Differentiation of neuroblasts in the chick optic tectum up to eight days of incubation. A Golgi study. Neuroscience 3: 307–325

    Google Scholar 

  • Raedler E, Raedler A (1978) Autoradiographic study of early neurogenesis in rat neocortex. Anat Embryol 154: 267–284

    Article  PubMed  CAS  Google Scholar 

  • Raedler A, Sievers J (1975) The development of the visual system of the Albino rat. Adv Anat Embryo! Cell Biol 3: Fasc 3

    Google Scholar 

  • Raedler A, Sievers J (1976) Light and electron microscopical studies of specific cells of the marginal zone in the developing rat cerebral cortex. Anat Embryol 149: 173–181

    Article  PubMed  CAS  Google Scholar 

  • Raedler E, Raedler A, Felhaus S (1980) Dynamical aspects of neocortical histogenesis in the rat. Anat Embryol 158: 253–269

    Article  PubMed  CAS  Google Scholar 

  • Raju T, Bignami A, Dahl D (1981) In vivo and in vitro differentiation of neurons and astrocytes in the rat embryo. Immunofluorescence study with neurofilament and glial filament antisera. Dev Biol 85: 344–357

    Google Scholar 

  • Rakic P (1971) Guidance of neurons migrating to the fetal monkey neocortex. Brain Res 34: 471–476

    Article  Google Scholar 

  • Rakic P (1972) Mode of cell migration to the superficial layers of the fetal monkey cortex. J Comp Neurol 145: 61–84

    Article  PubMed  CAS  Google Scholar 

  • Rakic P (1974) Neurons in rhesus monkey visual cortex: Systematic relation between time of origin and eventual disposition. Science 183: 425–427

    Article  PubMed  CAS  Google Scholar 

  • Rakic P (1975) Timing of major ontogenetic events in the visual cortex of the rhesus monkey. In: Buchwald NA, Brazier MAB (eds) Brain mechanisms in mental retardation. Academic, New York, pp 3–44

    Google Scholar 

  • Rakic P (1982) The role of neuronal-glial cell interaction during brain development. In: Sears TA (ed) Life Sciences Research Report 20. Neurono-glial cell interrelationships. Springer, Berlin Heidelberg New York, pp 25–38

    Google Scholar 

  • Rakic P, Stensaas LJ, Sayre EP, Sidman RL (1974) Computer-aided three dimensional reconstruction and quantitative analysis of cells from serial electron microscopic montages of foetal monkey brain. Nature 250: 31–34

    Article  PubMed  CAS  Google Scholar 

  • Retzius G (1893a) Die Cajal’schen Zellen der GroBhirnrinde beim Menschen und bei Säugern. Biologische Untersuchungen (neue Folge) 5: 1–8

    Google Scholar 

  • Retzius G (1893 b) Studien über Ependym und Neuroglia. Biologische Untersuchungen (neue Folge) 5:9–26

    Google Scholar 

  • Retzius G (1894a) Die Neuroglia des Gehirns beim Menschen und bei Säugetieren. Biologische Untersuchungen (neue Folge) 6: 1–28

    Google Scholar 

  • Retzius G (1894b) Weitere Beiträge zur Kenntnis der Cajal’schen Zellen der GroBhirnrinde des Menschen. Biologische Untersuchungen (neue Folge) 6: 29–36

    Google Scholar 

  • Revel JP, Brown S (1975) Cell junctions in development with particular reference to the neural tube. Cold Spring Harbor Symp Quant Biol 40: 443–455

    Google Scholar 

  • Reyners H, Gianfelici de Reyners E, Maisin J-R (1982) The beta astrocyte: a newly recognized radiosensitive glial cell type in the cerebral cortex. J Neurocytol 11: 967–983

    CAS  Google Scholar 

  • Reynolds ES (1963) The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol 17: 208–212

    Article  PubMed  CAS  Google Scholar 

  • Richardson KL, Jarett I, Finke EH (1960) Embedding in epoxy resins for ultrathin sectioning in electron microscopy. Stain Technol 35: 313–323

    PubMed  CAS  Google Scholar 

  • Rickmann M, Wolff JR (1976a) On the earliest stages of glial differentiation in the neocortex of rat. Exp Brain Res (Suppl) 1: 259–263

    Google Scholar 

  • Rickmann M, Wolff JR (1976b) Über die Entstehung von Astroblasten im Neocortex. Verh Anat Ges 70: 325–328

    PubMed  Google Scholar 

  • Rickmann M, Wolff JR (1977a) Morphological constellation of the initial step of glial differentiation in the neocortex of rat. Folia Morphol (Praha) 25: 231–234

    CAS  Google Scholar 

  • Rickmann M, Wolff JR (1977b) Morphologische Konstellation der Astro-(Glio-)genese im Neocortex. Verh Anat Ges 71: 957–961

    PubMed  Google Scholar 

  • Rickmann M, Wolff JR (1981) Differntiation of preplate neurons in the pallium of the rat. Bibl Anat 19: 142–146

    PubMed  Google Scholar 

  • Rickmann M, Chronwall BM, Wolff JR (1977) On the development of non-pyramidal neurons and axons outside the cortical plate: The early marginal zone as a pallial anlage. Anat Embryol 151: 285–307

    Google Scholar 

  • Roessmann U, Velasco ME, Sindely SD, Gambetti P (1980) Glial fibrillary acidic protein (GFAP) in ependymal cells during development. An immunocytochemical study. Brain Res 200: 13–21

    Google Scholar 

  • Rogers AW (1973) Techniques of autoradiography. Elsevier, Amsterdam

    Google Scholar 

  • Roots BI (1981) Comparative studies on glial markers. J Exp Biol 95: 167–180

    PubMed  CAS  Google Scholar 

  • Sauer ME, Walker BE (1959) Radiographic study of interkenetic nuclear migration in the neural tube. Proc Soc Exp Biol Med 101: 557–560

    PubMed  CAS  Google Scholar 

  • Schachner M, Kim SK, Zehnle R (1981) Developmental expression in central and peripheral nervous system of oligodendrocyte cell surface antigens (0 antigens) recognized by monoclonal antibodies. Dev Biol 83: 328–338

    Article  PubMed  CAS  Google Scholar 

  • Schachner M, Sommer I, Lagenaur C, Schnitzer J (1982) Developmental expression of antigenic markers in glial subclasses. In: Sears TA (ed) Life Sciences Research Report 20. Neuronoglial cell interrelationships. Springer, Berlin Heidelberg New York, pp 321–336

    Google Scholar 

  • Schaper A (1897) Die frühesten Differenzierungsvorgänge im Centralnervensystem. Arch Entwicklungsmech Organism 5: 81–132

    Article  Google Scholar 

  • Schmechel DE, Rakic P (1979a) A Golgi study of radial glial cells in developing monkey telencephalon: Morphogenesis and transformation into astrocytes. Anat Embryol 156: 115–152

    Google Scholar 

  • Schmechel DE, Rakic P (1979 b) Arrested proliferation of radial glial cells during midgestation in rhesus monkey. Nature 227: 303–305

    Google Scholar 

  • Schmechel D, Marangos PJ, Brightman M, Goodwin FK (1978) Brain enolases as specific markers of neuronal and glial cells. Science 199: 313–315

    Article  PubMed  CAS  Google Scholar 

  • Schmechel DE, Brightman MW, Marangos PJ (1980) Neurons switch from non-neuronal enolase to neuron-specific enolase during differentiation. Brain Res 190: 195–214

    Article  PubMed  CAS  Google Scholar 

  • Schnitzer J, Franke WW, Schachner M (1981) Immunocytochemical demonstration of vimentin in astrocytes and ependymal cells of developing and adult mouse nervous system. J Cell Biol 90: 435–447

    Article  PubMed  CAS  Google Scholar 

  • Schousboe A (1981) Transport and metabolism of glutamate and GABA in neurons and glial cells. Int Rev Neurobiol 22: 1–45

    Article  PubMed  CAS  Google Scholar 

  • Sechrist JW (1969) Neurocytogenesis. I. Neurofibrils, neurofilaments and the terminal mitotic cycle. Am J Anat 124: 117–134

    Article  PubMed  CAS  Google Scholar 

  • Shaw G, Osborn M, Weber K (1981) An immunofluorescence microscopical study of the neurofilament triplet proteins, vimentin and glial fibrillary acidic protein within the adult rat brain. Eur J Cell Biol 26: 68–82

    PubMed  CAS  Google Scholar 

  • Shimada M, Langman J (1970) Cell proliferation, migration and differentiation in the cerebral cortex of the golden hamster. J Comp Neurol 139: 227–244

    Article  PubMed  CAS  Google Scholar 

  • Shoukimas GM, Hinds JW (1978) The development of the cerebral cortex in the embryonic mouse: An electron microscopic serial section analysis. J Comp Neurol 179: 795–830

    Google Scholar 

  • Sidman RL (1970) Autoradiographic methods and principles for study of the nervous system with thymidine-3H. In: Nauta WJH, Ebbeson SOE (eds) Contemporary research methods in neuroanatomy. Springer, Berlin Heidelberg New York, pp 252–274

    Google Scholar 

  • Sidman RL, Rakic P (1973) Neuronal migration with special reference to developing human brain: A review. Brain Res 62: 1–35

    Google Scholar 

  • Sidman RL, Miale IL, Feder N (1959) Cell proliferation and migration in the primitive ependymal zone; an autoradiographic study of histogenesis in the nervous system. Exp Neurol 1: 322–333

    Article  PubMed  CAS  Google Scholar 

  • Sievers J, Raedler A (1981) Light and electronmicroscopical studies and the development of the horizontal cells of Cajal-Retzius. Bibl Anat 19: 147–151

    Google Scholar 

  • Skoff RP, Price DL, Stocks A (1976a) Electron microscopic autoradiographic studies of gliogenesis in rat optic nerve. I. Cell proliferation. J Comp Neurol 169: 291–312

    Google Scholar 

  • Skoff RP, Price DL, Stocks A (1976b) Electron microscopic autoradiographic studies of gliogenesis in rat optic nerve. II. Time of origin. J Comp Neurol 169: 313–335

    Google Scholar 

  • Smart I (1961) The subependymal layer of the mouse brain and its cell production as shown by radioautography after thymidine-3H injection. J Comp Neurol 116: 325–347

    Article  Google Scholar 

  • Smart I, Leblond CP (1961) Evidence for division of neuroglia cells in the mouse brain, as derived radioautography after injection of thymidine-H3. J Comp Neurol 116: 349–367

    Article  Google Scholar 

  • Sommer I, Schachner M (1981) Monoclonal antibodies (01 to 04) to oligodendrocyte cell surfaces: An immunocytological study in the central nervous system. Dev Biol 83: 311327

    Google Scholar 

  • Sommer I, Lagenaur C, Schachner M (1981) Recognition of Bergmann glial and ependymal cells in the mouse nervous system by monoclonal antibody. J Cell Biol 90: 448–458

    Article  PubMed  CAS  Google Scholar 

  • Spray DC, Harris AL, Bennett MVL (1981) Gap junctional conductance is a simple and sensitive function of intracellular pH. Science 211: 612–615

    Article  Google Scholar 

  • Stensaas LJ (1967a) The development of hippocampal and dorsolateral pallial regions of the cerebral hemisphere in foetal rabbits. I. Fifteen millimeter stage, spongioblast morphology. J Comp Neurol 129: 59–70

    Article  Google Scholar 

  • Stensaas LJ (1967b) The development of hippocampal and dorsolateral pallial regions of the cerebral hemisphere in foetal rabbits. III. Twenty-nine millimeter stage, marginal lamina. J Comp Neurol 130: 149–162

    Article  PubMed  CAS  Google Scholar 

  • Stensaas LJ (1967c) The development of hippocampal and dorsolateral pallial regions of the cerebral hemisphere in foetal rabbits. IV. Forty-one millimeter stage, intermediate lamina. J Comp Neurol 131: 409–422

    Article  PubMed  CAS  Google Scholar 

  • Stensaas LJ (1967d) The development of hippocampal and dorsolateral pallial regions of the cerebral hemisphere in foetal rabbits. V. Sixty millimeter stage, glial cell morphology. J Comp Neurol 131: 423–436

    Article  PubMed  CAS  Google Scholar 

  • Stensaas LJ, Gilson BC (1972) Ependymal and subependymal cells of caudato-pallial junction in the lateral ventricle of the neonatal rabbit. Z Zellforsch 132: 297–322

    Article  PubMed  CAS  Google Scholar 

  • Stensaas LJ, Stensaas SS (1968) An electron microscope study of cells in the matrix and intermediate laminae of the cerebral hemisphere of the 45 mm rabbit embryo. Z Zellforsch 91: 341–365

    Article  PubMed  CAS  Google Scholar 

  • Sternberger LA (1979) Immunocytochemistry, 2nd edn. Wiley, New York

    Google Scholar 

  • Steward JA (1975) Contribution of a change in m-RNA half-life to the accumulation of the tissue specific S-100 protein during postnatal development of the mouse brain. Dev Biol 44: 178–186

    Article  Google Scholar 

  • Sturrock RR (1974) Histogenesis of the anterior limb of the anterior commissure of the mouse brain. III. An electron microscopic study of gliogenesis. J Anat 117: 37–53

    PubMed  CAS  Google Scholar 

  • Sturrock RR (1975) A light and electron microscopic study of proliferation and maturation of fibrous astrocytes in the optic nerve of the human embryo. J Anat 119: 223–235

    PubMed  CAS  Google Scholar 

  • Sturrock RR (1976) Light microscopic identification of immature glial cells in semithin sections of the developing mouse corpus callosum. J Anat 122: 521–537

    PubMed  CAS  Google Scholar 

  • Tennyson VM (1965) Electron microscopic study of the developing neuroblast of the dorsal root ganglion of the rabbit embryo. J Comp Neurol 124: 267–318

    Article  PubMed  CAS  Google Scholar 

  • Tsai HM, Garber BB, Larramendi LMH (1981) 3H-Thymidine autoradiographic analysis of telencephalic histogenesis in the chick embryo: I. Neuronal birthdates of telencephalic compartments in situ. J Comp Neurol 198: 275–292

    Google Scholar 

  • Varon SS, Somjen GG (1979) Neuron-glia interactions. Neurosci Res Program Bull 17 (1): 42–65

    Google Scholar 

  • Vaughn JE (1969) An electron microscopic analysis of gliogenesis in rat optic nerves. Z Zell-forsch 94: 293–324

    Article  CAS  Google Scholar 

  • Vaughn JE, Peters A (1967) Electronmicroscopy of the early postnatal development of fibrous astrocytes. Am J Anat 121: 131–152

    Article  PubMed  CAS  Google Scholar 

  • Vaughn JE, Peters A (1968) A third neuroglial cell type. An electron microscopic study. J Comp Neurol 133: 269–288

    Google Scholar 

  • Vaughn JE, Sims T, Nalashima M (1977) A comparison of early development of axodendritic and axosomatic synapses upon embryonic mouse spinal motor neurons. J Comp Neurol 175: 79–100

    Article  PubMed  CAS  Google Scholar 

  • Voeller K, Pappas GD, Purpura DP (1963) Electron microscope study of development of cat superficial neocortex. Exper Neurol 7: 107–130

    Article  CAS  Google Scholar 

  • Waechter R v, Jaensch B (1972) Generation times of the matrix cells during embryonic brain development: An autoradiographic study in rats. Brain Res 46: 235–250

    Google Scholar 

  • Weber K, Rathke PC, Osborn M (1978) Cytoplasmic microtubular images in glutaraldehyde-fixed tissue culture cells by electron microscopy and by immunofluorescence microscopy. Proc Natl Acad Sci USA 75: 1820–1824

    Article  PubMed  CAS  Google Scholar 

  • Wechsler W (1966a) Elektronenmikroskopischer Beitrag zur Histogenese der weißen Substanz des Rückenmarks von Hühnerembryonen. Z Zellforsch 74: 232–251

    Article  PubMed  CAS  Google Scholar 

  • Wechsler W (1966b) Elektronenmikroskopischer Beitrag zur Nervenzelldifferenzierung und Histogenese der grauen Substanz des Rückenmarks von Hühnerembryonen. Z Zellforsch 74: 401–422

    Article  PubMed  CAS  Google Scholar 

  • Wechsler W, Meller K (1967) Electron microscopy of neuronal and glial differentiation in the developing brain of the chick. Prog Brain Res 26: 93–144

    Article  PubMed  CAS  Google Scholar 

  • Wentworth LE, Hinds JW (1978) Early motoneuron formation in the cervical spinal cord of the mouse: An electron microscopic serial section analysis. J Comp Neurol 177: 611–634

    Google Scholar 

  • Winkelmann E (1977) Morphologische Aspekte der Ontogenese. In: Biesold D, Matthies H (eds) Neurobiologie. Fischer, Jena, pp 307–369

    Google Scholar 

  • Wolff J (1965) Elektronenmikroskopische Untersuchungen über Struktur und Gestalt von Astrocytenfortsätzen. Z Zellforsch 66: 811–828

    Article  PubMed  CAS  Google Scholar 

  • Wolff JR (1976) Quantitative analysis of topography and development of synapses in the visual cortex. Exp Brain Res (Suppl) 1: 259–263

    Google Scholar 

  • Wolff JR (1978) Ontogenetic aspects of cortical architecture: Lamination. In: Brazier MAB, Petsche H (eds) Architectonics of the cerebral cortex. Raven, New York, pp 159–173

    Google Scholar 

  • Wolff JR, Rickmann M (1977) Cytological characteristics of early stages of glial differentiation in the neocortex. Folia Morphol (Praha) 25: 235–237

    CAS  Google Scholar 

  • Wolff JR, Goerz C, Bär T, Güldner FH (1975) Common morphogenetic aspects of various organotypic microvascular patterns. Microvasc Res 10: 373–395

    Article  PubMed  CAS  Google Scholar 

  • Wolff JR, Chronwall BM, Rickmann M (1978) Morphogenetic relations between cell migration and synaptogenesis in the neocortex of rat. Proc Eur Soc Neurochem 1: 158–173

    Google Scholar 

  • Wolff JR, Rickmann M, Chronwall BM (1979) Axo-glial synapses and GABA-accumulating glial cells in the embryonic neocortex of the rat. Cell Tiss Res 201: 239–248

    Article  CAS  Google Scholar 

  • Woodhams PL, Basco E, Hajos F, Csillag A, Balazs R (1981) Radial glia in the developing mouse cerebral cortex and hippocampus. Anat Embryol 163: 331–343

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wolff, J.R., Rickmann, M. (1985). References. In: Prenatal Gliogenesis in the Neopallium of the Rat. Advances in Anatomy Embryology and Cell Biology, vol 93. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70081-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70081-1_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-13849-5

  • Online ISBN: 978-3-642-70081-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics