Skip to main content

The Role of Calcium in Prostaglandin and Thromboxane Biosynthesis

  • Chapter
Calcium and Cell Physiology
  • 95 Accesses

Abstract

Prostaglandins and thromboxanes are biologically potent compounds derived from arachidonic acid. They are synthesized in a wide variety of tissues in response to various stimuli, and are known to modulate numerous physiological processes. These compounds are not stored within the cell, and their effects are restricted to the cell in which they are synthesized or to neighboring cells. Their precise mechanisms of action are not well understood; in general, their actions are believed to be mediated via cyclic AMP, or Ca2+.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ballou LR, Cheung WY (1983) Marked increase of phospholipase A2 activity in vitro and demonstration of an endogenous inhibitor. Proc Natl Acad Sci USA 80: 5203–5207

    Article  PubMed  CAS  Google Scholar 

  • Ballou LR, Cheung WY (1984) Unsaturated fatty acids inhibit human platelet phospholipase A2 activity. Fed Proc 43: 1463

    Google Scholar 

  • Bell RL, Kennerly DA, Stanford N, Majerus PW (1979) Diglyceride lipase: a pathway for arachidonate release from human platelets. Proc Natl Acad Sci USA 76: 3238–3241

    Article  PubMed  CAS  Google Scholar 

  • Bell RL, Majerus PW (1980) Thrombin-induced hydrolysis of phosphatidylinositol in human platelets. J Biol Chem 255: 1790–1792

    PubMed  CAS  Google Scholar 

  • Bell RL, Stanford N, Kennerly D, Majerus PW (1980) Diglyceride lipase: a pathway for arachidonate release from human platelets. Adv Prostaglandin Thromboxane Res 6: 219–224

    PubMed  CAS  Google Scholar 

  • Bergström S, Danilesson H, Samuelsson B (1964) The enzymatic formation of prostaglandin E2 from arachidonic acid. Prostaglandin and related factors. Biochim Biophys Acta 90: 207–210

    Google Scholar 

  • Berridge MJ (1980) Receptors and calcium signaling. Trends Pharmacol Sci 1: 419–424

    Article  CAS  Google Scholar 

  • Berridge MJ (1981) Phosphatidylinositol hydrolysis — a multifunctional transducing mechanism. Mol Cell Endocr 24: 115–140

    Article  CAS  Google Scholar 

  • Berridge MJ (1982) A novel cellular signaling system based on the integration of phospholipid and calcium metabolism. In: Cheung WY (ed) Calcium and Cell Function, vol III. Academic, New York, pp 1–36

    Google Scholar 

  • Billah MM, Lapetina EG, Cuatrecasas P (1980) Phospholipase A2 and phospholipase C activities of platelets: differential substrate specificity, Ca2+ requirement, pH dependence and cellular localization. J Biol Chem 255: 10227–10231

    PubMed  CAS  Google Scholar 

  • Billah MM, Lapetina EG, Cuatrecasas P (1981) Phospholipase A2 activity specific for phosphatidic acid: a possible mechanism for the production of arachidonic acid in platelets. J Biol Chem 256: 5399–5403

    PubMed  CAS  Google Scholar 

  • Billah MM, Lapetina EG (1982) Formation of lysophosphatidylinositol in platelets stimulated with thrombin or ionophore A23187. J Biol Chem 257: 5196–5200

    PubMed  CAS  Google Scholar 

  • Bills TK, Smith JB, Silver MJ (1976) Metabolism of [14C]arachidonic acid by human platelets. Biochim Biophys Acta 424: 303–314

    PubMed  CAS  Google Scholar 

  • Bills TK, Smith JB, Silver MJ (1977) Selective release of arachidonic acid from the phospholipids of human platelets in response to thrombin. J Clin Invest 60: 1–6

    Article  PubMed  CAS  Google Scholar 

  • Blackwell GJ, Duncombe WG, Flower RJ, Parsons MF, Vane JR (1977) The distribution and metabolism of arachidonic acid in rabbit platelets during aggregation and its modification by drugs. Br J Pharmacol 59: 35 3–366

    Google Scholar 

  • Blackwell GJ (1978) Phospholipase A2 and platelet aggregation. Adv Prostaglandin Thromboxane Res 3: 137–142

    PubMed  CAS  Google Scholar 

  • Broekman MJ, Ward JW, Marcus AJ (1980) Phospholipid metabolism in stimulated human platelets: changes in phosphatidylinositol, phosphatidic acid and lysophospholipids. J Clin Invest 66: 275–283

    Article  Google Scholar 

  • Broekman MJ, Ward JW, Marcus AJ (1981) Fatty acid composition of phosphatidylinositol and phosphatidic acid in stimulated platelets. Persistence of arachidonyl-stearyl structure. J Biol Chem 256: 8271–8274

    PubMed  CAS  Google Scholar 

  • Cheung WY (1980) Calmodulin plays a pivotal role in cellular regulation. Science (Wash DC) 207: 19–27

    Article  CAS  Google Scholar 

  • Craven PA, DeRubertis FR (1983) Ca2+ Calmodulin-dependent release of arachidonic acid for renal medullary prostaglandin synthesis: evidence for involvement of phospholipases A2 and C. J Biol Chem 258: 4814–4823

    PubMed  CAS  Google Scholar 

  • Diegel J, Cunningham M, Coburn RF (1980) Calcium dependence of prostaglandin release from the guinea pig taenia coli. Biochim Biophys Acta 619: 482–493

    PubMed  CAS  Google Scholar 

  • Derksen A, Cohen P (1975) Patterns of fatty acid release from endogenous substrates by human platelet homogenates and membranes. J Biol Chem 250: 9342–9347

    PubMed  CAS  Google Scholar 

  • Fain JN (1982) Involvement of phosphatidylinositol breakdown in elevation of cytosol Ca2+ by hormone and relationship to prostaglandin formation. Horiz Biochem Biophys 6: 237–276

    PubMed  CAS  Google Scholar 

  • Flower RJ (1979) Prostaglandins and related compounds. In: Vane JR, Ferriera JH (eds) Anti-Inflammatory Drugs. Springer, Berlin Heidelberg New York, pp 374–422 (Handbook of Experimental Pharmacology, vol 50/I)

    Google Scholar 

  • Flower RJ, Blackwell GJ (1976) The importance of phospholipase-A2 in prostaglandin biosynthesis. Biochem Pharmacol 25: 285–291

    Article  PubMed  CAS  Google Scholar 

  • Franson R, Patriarcha P, Eisbach P (1974) Phospholipid metabolism by phagocytic cells. Phospholipase AZ associated with rabbit polymorphonuclear leukocyte granules. J Lipid Res 15: 380–388

    PubMed  CAS  Google Scholar 

  • Gerrard JM (1979) Lysophosphatidic acids. Influence on platelet aggregation and intracellular calcium flux. Am J Pathol 96: 423–438

    PubMed  CAS  Google Scholar 

  • Hamberg M, Samuelsson B (1967) On the mechanism of the biosynthesis of prostaglandins E1 and F1α. J Biol Chem 242: 5336–5342

    PubMed  CAS  Google Scholar 

  • Hamberg M, Samuelsson B (1973) Detection and isolation of an endoperoxide intermediate in prostaglandin biosynthesis. Proc Natl Acad Sci USA 70: 899–903

    Article  PubMed  CAS  Google Scholar 

  • Hamberg M, Samuelsson B (1974a) Prostaglandin endoperoxides. Novel transformation of arachidonic acid in human platelets. Proc Natl Acad Sci USA 71: 3400–3404

    Article  PubMed  CAS  Google Scholar 

  • Hamberg M, Samuelsson B (1974b) Prostaglandin endoperoxides VII. Novel transformations of arachidonic acid in guinea pig lung. Biochem Biophys Res Commun 61: 942–949

    Article  PubMed  CAS  Google Scholar 

  • Hamberg M, Svensson J, Samuelsson B (1975) Thromboxanes: a new group of biologically active compounds derived from prostaglandin endoperoxides. Proc Natl Acad Sci USA 72: 2994–2998

    Article  PubMed  CAS  Google Scholar 

  • Hawthorne JN, Pickard MR (1979) Phospholipids in synaptic function. J Neurochem 32: 5–14

    Article  PubMed  CAS  Google Scholar 

  • Hinman JW (1972) Prostaglandins. Annu Rev Biochem 41: 161–178

    Article  CAS  Google Scholar 

  • Hofmann SL, Majerus PW (1982) Modulation of phosphatidylinositol-specific phospholipase C ac- tivity by phospholipid interaction, diglyceride, and calcium ions. J Biol Chem 257: 14359–14364

    PubMed  CAS  Google Scholar 

  • Imai A, Ishizuka Y, Kawai K, Nozawa Y (1982) Evidence for coupling of phosphatidic acid formation and calcium influx in thrombin-activated human platelets. Biochem Biophys Res Commun 108: 752–759

    Article  PubMed  CAS  Google Scholar 

  • Imai A, Nakashima S, Nozawa Y (1983) The rapid polyphosphoinositide metabolism may be a triggering event for thrombin-mediated stimulation of human platelets. Biochim Biophys Res Commun 110: 108–115

    Article  CAS  Google Scholar 

  • Irvine RF, Dawson RMC (1978) Is there a membrane-bound, Ca2+ dependent phosphatidylinositol phosphodiesterase in rat brain? Biochem Soc Trans 6: 1020–1021

    PubMed  CAS  Google Scholar 

  • Irvine RF, Hemington N, Dawson RMC (1979) The calcium-dependent phosphatidylinositol-phosphodiesterase of rat brain. Eur J Biochem 99: 525–530

    Article  PubMed  CAS  Google Scholar 

  • Irvine RF, Letcher AJ, Dawson RMC (1979) Fatty acid stimulation of membrane phosphatidyl- inositol hydrolysis by brain phosphatidylinositol phosphodiesterase. Biochem J 178: 497–500

    PubMed  CAS  Google Scholar 

  • Jesse RL, Franson RC (1979) Modulation of purified phospholipase A2 activity from human platelets by calcium and indomethacin. Biochim Biophys Acta 575: 467–470

    PubMed  CAS  Google Scholar 

  • Knapp HR, Olez O, Roberts LJ, Sweetman BJ, Oates JA, Reed PW (1977) Ionophores stimulate prostaglandin and thromboxane biosynthesis. Proc Natl Acad Sci USA 74: 4251–4255

    Article  PubMed  CAS  Google Scholar 

  • Lands WEM (1979) The biosynthesis and metabolism of prostaglandins. Annu Rev Physiol 41: 633–652

    Article  PubMed  CAS  Google Scholar 

  • Lapetina EG, Cuatrecasas P (1979) Stimulation of phosphatidic acid production in platelets precedes the formation of arachidonate and parallels the release of serotonin. Biochim Biophys Acta 573: 394–402

    PubMed  CAS  Google Scholar 

  • Lapetina EG, Michell RH (1973) A membrane-bound activity catalyzing phosphatidylinositol breakdown to 1,2-diacylglycerol, D-myo-inositol 1,2 cyclic phosphate and D-myo-inositol-1phosphate. Biochem J 131: 433–442

    PubMed  CAS  Google Scholar 

  • Lapetina EG, Chandrabose KA, Cuatrecasas P (1978a) Lonophore A23187-and thrombin-induced platelet aggregation: independence from cyclooxygenase products. Proc Natl Acad Sci USA 75: 818-822

    Article  Google Scholar 

  • Lapetina EG, Schmitges CJ, Chandrabose K, Cuatrecasas P (1978b) Regulation of phospholipase activity in platelets. Adv Prostaglandin Thromboxane Res 3: 127–135

    PubMed  CAS  Google Scholar 

  • Lapetina EG, Billah MM, Cuatrecasas P (1981) The phosphatidylinositol cycle and the regulation of arachidonic acid production. Nature (Lond) 292: 367–369

    Article  CAS  Google Scholar 

  • Marcus AJ, Ullman HL, Safier LB (1969) Lipid composition of sub cellular particles of human blood platelets. J Lipid Res 10: 108–114

    PubMed  CAS  Google Scholar 

  • Mauco G, Chap H, Douste-Blazy S (1979) Characterization and properties of a phosphatidylinositol phosphodiesterase (phospholipase C) from platelet cytosol. FEBS Lett 100: 367–370

    Article  PubMed  CAS  Google Scholar 

  • McKean ML, Smith JB, Silver MJ (1981) Formation of lysophosphatidylcholine by human platelets in response to thrombin. J Biol Chem 256: 1522–1524

    PubMed  CAS  Google Scholar 

  • Michell RH (1975) Inositol phospholipids and cell surface receptor function. Biochim Biophys Acta 415: 81–147

    PubMed  CAS  Google Scholar 

  • Michell RH (1977) The possible involvement of phosphatidylinositol breakdown in the mechanism of stimulus-response coupling at receptors which control cell-surface calcium gates. Adv Exp Med Biol 83: 447–464

    PubMed  CAS  Google Scholar 

  • Michell RH (1979) Inositol phospholipids in membrane function. Trends Biochem Sci 4: 128–131

    Article  CAS  Google Scholar 

  • Michell RH, Kirk CJ (1981a) Why is phosphatidylinositol degraded in response to stimulation of certain receptors? Trends Pharmacol Sci 2: 86–89

    Article  CAS  Google Scholar 

  • Michell RH, Kirk CJ (1981b) Studies of receptor-stimulated inositol lipid metabolism should focus upon measurement of inositol lipid breakdown. Biochem J 198: 247–248

    PubMed  CAS  Google Scholar 

  • Michell RH, Jones LM, Jafferji SS (1977) A possible role for phosphatidylinositol breakdown in muscarinic cholinergic stimulus-response coupling. Biochem Soc Trans 5: 77–81

    PubMed  CAS  Google Scholar 

  • Moskowitz N, Schook W, Puszkin S (1982) Interaction of brain synaptic vesicles induced by endogenous Ca2+-dependent phospholipase A,. Science (Wash DC) 216: 305–307

    Article  CAS  Google Scholar 

  • Moskowitz N, Shapiro L, Schook W, Puszkin S (1983) Phospholipase A, modulation by calmodulin, prostaglandins, and cyclic nucleotides. Biochem Biophys Res Commun 115: 94–99

    Article  PubMed  CAS  Google Scholar 

  • Nugteren DH, Hazelhof D (1973) Isolation and properties of intermediates in prostaglandin biosynthesis. Biochim Biophys Acta 326: 448–461

    PubMed  CAS  Google Scholar 

  • Pickett WC, Jesse RL, Cohen P (1977) Initiation of phospholipase A2 activity in human platelets by the calcium ionophore A23187. Biochim Biophys Acta 486: 209–213

    CAS  Google Scholar 

  • Qureshi Z, Cagen LM (1982) Prostaglandin F20, produced by rabbit renal slices is not a metabolite of prostaglandin E2. Biochem Biophys Res Commun 104: 1255–1263

    Article  PubMed  CAS  Google Scholar 

  • Rittenhouse-Simmons S (1979) Production of diglyceride from phosphatidylinositol in activated human platelets. J Clin Invest 63: 580–587

    Article  PubMed  CAS  Google Scholar 

  • Rittenhouse-Simmons S (1980) Indomethacin-induced accumulation of digylceride in activated human platelets. J Biol Chem 255: 2259–2262

    PubMed  CAS  Google Scholar 

  • Rittenhouse-Simmons S (1981) Differential activation of platelet phospholipase by thrombin and ionophore A23187. J Biol Chem 256: 4153–4155

    PubMed  CAS  Google Scholar 

  • Rittenhouse-Simmons S (1977) The mobilization of arachidonic acid in platelets exposed to thrombin or ionophore A23187. J Clin Invest 60: 495–498

    Article  PubMed  CAS  Google Scholar 

  • Rittenhouse-Simmons S, Deykin D (1978) The activation by Ca2+ of platelet phospholipase A,: effects of dibutyryl cyclic adenosine monophosphate and 8-(N-N-diethylamino)octyl-3,4,5trimethoxybenzoate. Biochim Biophys Acta 543: 409–422

    PubMed  CAS  Google Scholar 

  • Rubin RP, Kelly KL, Halenda SP, Laychock SG (1982) Arachidonic acid metabolism in rat pancreatic acinar cells: calcium-mediated stimulation of the lipoxygenase system. Prostaglandins 24: 179–193

    Article  PubMed  CAS  Google Scholar 

  • Samuelsson B, Goldyne M, Granström E, Hamberg M, Hammarström S, Malmsten C (1978) Prostaglandins and thromboxanes. Annu Rev Biochem 47: 997–1029

    Article  PubMed  CAS  Google Scholar 

  • Samuelsson B, Grantström E, Green K, Hamberg M, Hammarström S (1975) Prostaglandins. Annu Rev Biochem 44: 669–695

    Article  CAS  Google Scholar 

  • Schoene NW (1978) Properties of platelet phospholipase A2. Adv Prostaglandin Thromboxane Res 3: 121–126

    PubMed  CAS  Google Scholar 

  • Serhan C, Anderson P, Goodman E, Dunham E, Dunham P, Weissman G (1981) Phosphatidate and oxidized fatty acids are calcium ionophores. J Biol Chem 256: 2736–2741

    PubMed  CAS  Google Scholar 

  • Silver MJ, Bills TK, Smith JB (1978) Platelets and prostaglandins: the key role of platelet phospholipase A2 activity. In: deGaetano G, Gatalini S (eds) Platelets: A Multidisciplinary Approach. Raven, New York, pp 213–225

    Google Scholar 

  • Van den Bosch H (1980) Intracellular phospholipases A. Biochim Biophys Acta 604: 191–246

    Article  PubMed  Google Scholar 

  • van Dorp DA, Beerthius RK, Nugteren DH, Vonkeman H (1964) Enzymatic conversion of all-cispolyunsaturated fatty acids into prostaglandins. Nature (Lond) 203: 839–843

    Article  Google Scholar 

  • Vogt W (1978) Role of phospholipase A2 in prostaglandin formation. Adv Prostaglandin Thromboxane Res 3: 89–95

    PubMed  CAS  Google Scholar 

  • Walenga RW, Opas EE, Feinstein MB (1981) Differential effects of calmodulin antagonists on phospholipase A, and C in thrombin-stimulated platelets. J Biol Chem 256: 12523–12528

    PubMed  CAS  Google Scholar 

  • Withnall MT, Brown TJ (1982) Pancreatic phospholipase A2 is not regulated by calmodulin. Biochem Biophys Res Commun 106: 1049–1055

    Article  PubMed  CAS  Google Scholar 

  • Wong PY-K, Cheung WY (1979) Calmodulin stimulates human platelet phospholipase A,. Biochem Biophys Res Commun 90: 473–480

    Article  PubMed  CAS  Google Scholar 

  • Wong PY-K, Cheung WY (1982) Calmodulin stimulates thromboxane synthesis in human platelets: studies with thromboxane synthetase inhibitors. Adv Lipid Res 19: 447–452

    Google Scholar 

  • Wong PY-K, Lee WH, Chao PH-W, Cheung WY (1980) The role of calmodulin in prostaglandin metabolism. Ann NY Acad Sci 356: 179–189

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag, Berlin Heidelberg

About this chapter

Cite this chapter

Ballou, L.R., Cheung, W.Y. (1985). The Role of Calcium in Prostaglandin and Thromboxane Biosynthesis. In: Marmé, D. (eds) Calcium and Cell Physiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70070-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70070-5_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-70072-9

  • Online ISBN: 978-3-642-70070-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics