Measurement of Cerebral Blood Flow Using 15O-Labeled Water and Positron Emission Tomography with Special Attention to the Volume of Distribution of Radiowater

  • J. C. Depresseux
  • J. Hodiaumont
  • R. Czichosz


The methods using inert and diffusible radiotracers for evaluation of cerebral blood flow all rest upon equations derived from the model initially designed by Kety and Schmidt (1948). The formulation of this one-compartmental, two-parameter model describes transfer function of the tracer in terms of local blood flow (Fi) and local effective volume of distribution (Vi).


Positron Emission Tomography Cerebral Blood Flow Cereb Blood Flow Local Blood Flow Local Cerebral Blood Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Budinger TF, Derenzo SE, Gullberg GT, Greenberg WL, Huesman RG (1977) Emission computer assisted tomography with single-photon and positron annihilation photon emitters. J. Comput. Assist. Tomogr., 1: 131–145PubMedCrossRefGoogle Scholar
  2. Crone C (1963) The permeability of capillaries in various organs as determined by use of the “indicator diffusion” method. Acta Physiol Scand 58: 292–305PubMedCrossRefGoogle Scholar
  3. Depresseux J (1983) A method for local evaluation of the volume of rapidly exchangeable water in the human brain. In: Heiss WD, Phelps ME (eds) Positron emission tomography of the brain. Springer, Berlin, p 93–102Google Scholar
  4. Depresseux J, Cheslet JP, Hodiaumont J (1982) Evaluation tomographique chez l’homme du débit sanguin cérébral et du volume d’eau échangeable. J Biophys Med Nucl 6: 167–171Google Scholar
  5. Eichling JO, Higgins CS, Ter-Pogossian MM (1977) Determination of radionuclide concentrations with positron CT scanning ( PET ). J Nucl Med 18: 845–847PubMedGoogle Scholar
  6. Hoffman EJ, Huang SC, Phelps ME (1979) Quantitation in positron emission computed tomography: 1. Effect and object size. J.4 Comput Assist Tomogr 2: 299–308CrossRefGoogle Scholar
  7. Huang SC, Hoffman EJ, Phelps ME, Kuhl DE (1979) Quantitation in positron emission computed tomography: 2. Effect and inaccurate attenuation correction. J Comput Assist Tomogr 3: 804–814PubMedGoogle Scholar
  8. Huang SC, Carson R, Phelps ME (1982) Measurement of local blood flow and distribution volume with short-lived isotopes: a general input technique. J Cereb Blood Flow Metab 2: 99–108PubMedCrossRefGoogle Scholar
  9. Huang SC, Carson RE, Hoffman EJ, Carson J, Mac Donald N, Barrio JR, Phelps ME (1983) Quantitative measurement of local cerebral blood flow in humans by positron computed tomography and 15O-water. J Cereb Blood Flow Metab 3: 141–153PubMedCrossRefGoogle Scholar
  10. Kety SS, Schmidt CF (1948) The nitrous oxide method for the quantitative determination of cerebral blood flow in man: theory, procedure and normal values. J Clin Invest 27: 476–403CrossRefGoogle Scholar
  11. West JB, Dollery CT (1962) Uptake of oxygen 15-labeled CO2compared with carbon 11-labeled CO2in the lung. J Appl Physiol 17: 9–13PubMedGoogle Scholar
  12. Williams CW, Crabtree MC, Burgiss SG (1979) Design and performance characteristics of a positron emission computed axial tomograph—ECAT II. IEEE Trans Nucl Sc Ns—26: 619–627Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • J. C. Depresseux
    • 1
  • J. Hodiaumont
    • 1
  • R. Czichosz
    • 1
  1. 1.Cyclotron Research CenterUniversité de LiègeLiègeBelgium

Personalised recommendations