Advertisement

Xenon-133 Dynamic SPECT in Cerebrovascular Disease

  • U. Buell
  • G. Leinsinger
  • T. Kreisig
  • P. Schmiedek

Abstract

Inhalation of xenon-133 gas has reached the stage of useful clinical application in recent years. Besides employment of multiple probes, a dynamic SPECT procedure (DSPECT) was introduced by the group of Lassen (Stokely et al. 1980; Lassen et al. 1981). Since first reports have mainly been aimed at computation methods and technical considerations (Celsis etal. 1981; Bonte and Stokely 1981), clinical results are still the subject of discussion (Buell et al. 1983; Moser et al. 1983; Kanaya et al. 1983).

Keywords

Regional Cerebral Blood Flow Areal Flow Left Internal Carotid Artery Areal Ratio Dynamic SPECT 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bonte FJ, Stokely EM (1981) Single-photon tomographic study of regional cerebral blood flow after stroke: concise communication. J. Nucl. Med. 22: 1049–1053PubMedGoogle Scholar
  2. Buell U, Scheid KF, Lanksch W, etal. (1981) Sensitivity of computer assisted radionuclide angiography in transient ischemic attack and prolonged reversible ischemic neurologic deficit. Comparison with findings in radiographic angiography and transmission computerized axial tomography. Stroke 12: 829–834PubMedCrossRefGoogle Scholar
  3. Buell U, Moser E, Schmiedek P, etal. (1983) Evaluation of Xe-133 DSPECT in unilateral cerebrovascular disease. A comparative study to transmission CT and X-ray angiography. J. nucl. Med. 24: P6Google Scholar
  4. Celsis P, Goldman T, Henriksen L, etal. (1981) A method for calculating regional cerebral blood flow from emission computed tomography of inert gas concentrations. J. com. ass. Tomogr. 5: 641–645CrossRefGoogle Scholar
  5. Coleman RE, Drayer BP, Jaszczak RJ (1982) Studying regional brain function: a challenge for SPECT. J. Nucl. Med. 23: 266–270PubMedGoogle Scholar
  6. Kanaya H, Endo H, Suguyama T, etal. (1983) “Crossed cerebellar diaschisis” in patients with putaminal hemorrage. J. Cerebr. Blood Flow Metab. 3:S27–S28Google Scholar
  7. Kanno I, Lassen NA (1979) Two methods for calculation regional cerebral blood flow from emission computed tomography of inert gas concentrations. J. comp ass Tomogr. 3: 71–76CrossRefGoogle Scholar
  8. Lassen NA, Henriksen L, Paulson O (1981) Regional cerebral blood flow in stroke by 133-xenon inhalation and emission tomography. Stroke 12: 284–288PubMedCrossRefGoogle Scholar
  9. Moser EA, Schmiedek P, Kirsch CM, etal. (1983) Xe-133 dynamic single photon emission computerized tomography (DSPECT):regional cerebral blood flow (rCBF) in normals and patients with cerebrovascular disease (CVD). J. Cerebr. Blood Flow Metab. 3: S25–S26Google Scholar
  10. Schmiedek P, Lanksch W, Olteanu-Nerbe V, et al. (1977) Combined use of regional cerebral blood flow measurement and computerized tomography for the diagnosis of cerebral ischemia. In: Schmiedek P, Gratzl O, Spetzler RF (eds) Microsurgery for Stroke. New York, Springer, Chap. 8, p 67–78Google Scholar
  11. Stokely EM, Sveinsdottier E, Lassen NA, etal. (1980) A single photon dynamic computer assisted tomograph ( DCAT) for imaging brain function in multiple cross sections. J. comp ass Tomogr. 4: 230–240Google Scholar
  12. Todd-Pokropek AE, Jarritt PH (1982) The noise characteristics of SPECT systems. In Computed emission tomography, PJ Ell, BL Holaman, Eds. Oxford Univ. Press, New York, pp 390–398Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • U. Buell
    • 1
  • G. Leinsinger
    • 1
  • T. Kreisig
    • 1
  • P. Schmiedek
    • 1
  1. 1.Abteilung für Nuklearmedizin und Neurochirurgie, Klinikum GroßhadernUniversität MünchenMünchen 70Germany

Personalised recommendations