Skip to main content

Metabolism and Toxicity of Acetaldehyde

  • Chapter
Alcohol Related Diseases in Gastroenterology

Abstract

Acetaldehyde is the first oxidation product of ethanol, and under normal conditions it is oxidized further so rapidly that significant acetaldehyde concentrations can only be found in the liver. Aldehyde oxidase, xanthine oxidases, and aldehyde dehydrogenases are all capable of catalyzing aldehyde oxidation. The first two enzymes, however, have a broad substrate specificity and a low affinity for acetaldehyde (K m > 1 mM), and consequently their involvement in the metabolism of acetaldehyde is insignificant (Lundquist 1970; Lindros 1978). The main enzyme oxidizing acetaldehyde is aldehyde dehydrogenase (ALDH), which catalyzes the oxidation of acetaldehyde in the presence of nicotinamide-adenine dinucleotide (NAD) as follows:

$$ C{H_3}CHO + NA{D^ + }\xrightarrow[{{H_2}O}]{{ALDH}}C{H_3}CO{O^ - } + NADH + {H^ + }. $$

Most of the acetaldehyde formed from ethanol is subsequently oxidized to acetate in liver.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agarwal DP, Harada S, Goedde HW (1981) Racial differences in biological sensitivity to ethanol: the role of alcohol dehydrogenase and aldehyde dehydrogenase isozymes. Alcoholism 5: 12–16

    PubMed  CAS  Google Scholar 

  • Armstrong JD, Kerr HT (1956) A new protective drug in the treatment of alcoholism. ( Preliminary trial of citrated calcium carbimide ). Can Med Assoc J 74: 795–797

    PubMed  CAS  Google Scholar 

  • Asmussen E, Haid J, Jacobsen E, Jorgensen G (1948) Studies on the effect of tetraethylthiuramdisulphide ( Antabuse) and alcohol on respiration and circulation in normal human subjects. Acta Pharmacol Toxicol 4: 297–304

    CAS  Google Scholar 

  • Baraona E, Leo MA, Borowsky SA, Lieber CS (1977) Pathogenesis of alcohol-induced accumulation of protein in the liver. J Clin Invest 60: 546–554

    PubMed  CAS  Google Scholar 

  • Baraona E, Matsuda Y, Pikkarainen P, Finkelman F, Lieber CS (1979) Exaggeration of the ethanol-induced decrease in liver microtubules after chronic alcohol consumption. Gastroenterology 76: 1274

    Google Scholar 

  • Baraona E, Pikkarainen P, Salaspuro M, Finkelman F, Lieber CS (1980) Acute effects of ethanol on hepatic protein synthesis and secretion in the rat. Gastroenterology 79: 104–111

    PubMed  CAS  Google Scholar 

  • Barkman R, Perman ES (1963) Supersensitivity to ethanol in rabbits treated with Coprinus atramentarius. Acta Pharmacol Toxicol 20: 43–46

    CAS  Google Scholar 

  • Barnett AH, Pyke DA (1980) Chlorpropamide-alcohol flushing and large-vessel disease in non-insulin dependent diabetes. Br Med J 2: 261–262

    Google Scholar 

  • Bell RG (1956) Clinical trial of citrated calcium carbimide. Can Med Assoc J 74: 797–798

    PubMed  CAS  Google Scholar 

  • Blair AH, Bodley FH (1969) Human liver aldehyde dehydrogenase: partial purification and properties. Can J Biochem 47: 265–272

    PubMed  CAS  Google Scholar 

  • Bode JCh, Bode Ch, Thiele D (1979) Alcohol metabolism in man: effect of intravenous fructose infusion on blood ethanol elimination rate following stimulation by phénobarbital treatment or chronic alcohol consumption. Klin Wochenschr 57: 125–130

    PubMed  CAS  Google Scholar 

  • Büttner H (1965) Aldehyd- und Alkoholdehydrogenase. Aktivität in Leber und Niere der Ratte. Biochem Zeitsch 341: 300–314

    Google Scholar 

  • Büttner H, Portwich F (1960) Wirkungen des 7V-(4-Methylbenzosulfonyl)-7V-butyl-harnstoffs (D869) auf den Stoffwechsel des Äthanols. Arch Exp Pathol Pharmakol 238: 45–46

    Google Scholar 

  • Casier H, Polet H (1958) Influence du disulfiram (Antabus) sur le metabolisme de l’alcool éthylique marqué chez la souris. Arch Int Pharmacodyn Ther 113: 439–496

    Google Scholar 

  • Cederbaum AI, Lieber CS, Rubin E (1974a) The effect of acetaldehyde on mitochondrial function. Arch Biochem Biophys 161: 26–39

    CAS  Google Scholar 

  • Cederbaum AI, Lieber CS, Rubin E (1974b) Effects of chronic ethanol treatment on mitochondrial functions. Arch Biochem Biophys 165: 560–569

    PubMed  CAS  Google Scholar 

  • Christensen JM, Angelo H, Knop J (1981) Determination of acetaldehyde in human blood by gas chromatographic method with negligible artefactual acetaldehyde formation. Clin Chim Acta 116: 389–395

    PubMed  CAS  Google Scholar 

  • Cicero TJ, Bell RD (1980) Effects of ethanol and acetaldehyde on the biosynthesis of testosterone in the rodent testes. Biochem Biophys Res Commun 94: 1814–1819

    Google Scholar 

  • Cicero TJ, Meyer ER, Bell RD (1979) Effects of ethanol on the hypothalamic-pituitary-luteinizing hormone axis and testicular steroidogenesis. J Pharmacol Exp Ther 208: 210–215

    PubMed  CAS  Google Scholar 

  • Cicero TJ, Bell RD, Meyer ER, Badger TM (1980) Ethanol and acetaldehyde directly inhibit testicular steroidogenesis. J Pharmacol Exp Ther 213: 228–233

    PubMed  CAS  Google Scholar 

  • Cobb CF, Ennis MF, van Thiel DH, Gavaler JS, Lester R (1980) Isolated testes perfusion: a method using a cell and protein-free perfusate useful for the evaluation of potential drug and/or metabolic injury. Metabolism 29: 71–79

    PubMed  CAS  Google Scholar 

  • Cohen G (1973) Tetrahydroisoquinoline alkaloids: utpake, storage and secretion by the adrenal medulla and by adrenergic nerves. Ann NY Acad Sci 215: 116–119

    PubMed  CAS  Google Scholar 

  • Cohen G, Collins M (1970) Alkaloids from catecholamines in adrenal tissue: possible role in alcoholism. Science 167: 1749–1751

    PubMed  CAS  Google Scholar 

  • Czyzyk A, Mohnike G (1957) Ãœber die Beeinflussung der Alkoholtoleranz durch blutzuckersenkende Harnstoffderivate. Dtsch Med Wochenschr 82: 1585–1586

    PubMed  CAS  Google Scholar 

  • Davis VE, Walsh MJ (1970) Alcohol, amines and alkaloids: possible biochemical basis for alcohol addiction. Science 167: 1005–1007

    PubMed  CAS  Google Scholar 

  • Deitrich RA (1966) Tissue and subcellular distribution of mammalian aldehydeoxidizing capacity. Biochem Pharmacol 15: 1911–1922

    PubMed  CAS  Google Scholar 

  • Deitrich RA (1971) Genetic aspects of increase in rat liver aldehyde dehydrogenase induced by phenobarbital. Science 173: 334–336

    PubMed  CAS  Google Scholar 

  • Deitrich RA, Collins AC, Erwin VG (1972) Genetic influence upon phenobarbital-induced increase in rat liver supernatant aldehyde dehydrogenase activity. J Biol Chem 247: 7232–7236

    PubMed  CAS  Google Scholar 

  • De Master EG, Redfern B, Weir EK, Pierpont GL, Crouse LJ (1983) Elimination of artifactual acetaldehyde in the measurement of human blood acetaldehyde by the use of polyethylene glycol and sodium azide: normal blood acetaldehyde levels in the dog and human after ethanol. Alcoholism 7: 436–442

    Google Scholar 

  • deSilva NE, Tunbridge WMB (1980) Chlorpropamide alcohol flushing in noninsulin dependent diabetics. Diabetologia 19: 269

    Google Scholar 

  • deSilva NE, Tunbridge WMG, Alberti KGMM (1981) Low incidence of chlorpropamide-alcohol flushing in diet-treated, non-insulin-dependent diabetes. Lancet 1: 128–131

    PubMed  CAS  Google Scholar 

  • Eade NR (1959) Mechanisms of sympathomimetic action of aldehydes. J Pharmacol Exp Ther 127: 29–34

    PubMed  CAS  Google Scholar 

  • Eckfeldt J, Mope L, Tako K, Yonetani T (1976) Horse liver aldehyde dehydrogenase. Purification and characterization of two isozymes. J Biol Chem 251: 236–240

    PubMed  CAS  Google Scholar 

  • Elenbaas RM (1977) Management of the disulfiram-alcohol reaction. N Engl Med Cent Hosp Forum 6: 8

    Google Scholar 

  • Ellingboe J, Varinelli CC (1979) Ethanol inhibits testosterone biosynthesis by direct action on Ley dig cells. Res Commun Chem Pathol Pharmacol 24: 87–102

    PubMed  CAS  Google Scholar 

  • Eriksson CJP (1980) Problems and pitfalls in acetaldehyde determinations. Alcoholism 4: 22–29

    PubMed  CAS  Google Scholar 

  • Eriksson CJP, Deitrich RA (1983) Metabolic mechanisms in tolerance and physical dependence on alcohol. In: Kissin B, Begleiter H (eds) The pathogenesis of alcoholism, vol 7. Plenum, London, pp 253–283

    Google Scholar 

  • Eriksson CJP, Peachey JE (1980) Lack of difference in blood acetaldehyde of alcoholics and controls after ethanol ingestion. Pharmacol Biochem Behav [Suppl 1] 13: 101–105

    CAS  Google Scholar 

  • Eriksson CJP, Marselos M, Koivula T (1975) Role of cytosolic rat liver aldehyde dehydrogenase in the oxidation of acetaldehyde during ethanol metabolism in vivo. Biochem J 152: 709–712

    PubMed  CAS  Google Scholar 

  • Eriksson CJP, Sippel HW, Forsander OA (1977) The occurrence of acetaldehyde binding in rat but not in human blood. FEBS Lett 75: 205–208

    PubMed  CAS  Google Scholar 

  • Erzielev GI (1973) Acetaldehyde and alcoholism. Pharmacogenesis of a disulfiram-alcohol reaction and its management by binding acetaldehyde with sodium metabisulfite. Sov Neurol Psych 6: 42–51

    Google Scholar 

  • Ferguson JKW (1956) A new drug for the treatment of alcoholism. Can Med Assoc J 74: 793–795

    PubMed  CAS  Google Scholar 

  • Fischer I (1945) Sáregen svampfórgiftning. Svensk Lákartid 42: 2513–2515

    Google Scholar 

  • Forsander OA (1970) Influence of ethanol and butyraldoxime on liver metabolism. Biochem Pharmacol 19: 2131–2136

    PubMed  CAS  Google Scholar 

  • Freund G, O’Hollaren P (1965) Acetaldehyde concentrations in alveolar air following a standard dose of ethanol in man. Lipid Res 6: 471–477

    CAS  Google Scholar 

  • Fried R (1977) Comments on Antabuse therapy in alcoholism. Alcoholism 1: 275–276

    PubMed  CAS  Google Scholar 

  • Fukui Y (1969) Gas chromatograph determination of acetaldehyde in the expired air after ingestion of alcohol. Jp J Leg Med 23: 24

    CAS  Google Scholar 

  • Gaines KC, Salhany JM, Tuma DJ, Sorrell MF (1977) Reaction of acetaldehyde with human erythrocyte membrane proteins. FEBS Lett 74: 115–119

    Google Scholar 

  • Genest K, Coldwell BB, Hughes DW (1968) Potentiation of ethanol by Coprinus atramentarius in mice. J Pharm Pharmacol 20: 102–106

    PubMed  CAS  Google Scholar 

  • Glenn JL, Vanko M (1959) Choline and aldehyde oxidation by rat liver. Arch Biochem Biophys 82: 145–152

    PubMed  CAS  Google Scholar 

  • Greenfield NJ, Pietruszko R (1977) Two aldehyde dehydrogenases from human liver. Isolation via affinity chromatography and characterization of the isozymes. Biochim Biophys Acta 483: 35–45

    PubMed  CAS  Google Scholar 

  • Greenfield NJ, Pietruszko R, Lin G, Lester D (1976) The effect of ethanol ingestion on the aldehyde dehydrogenases of rat liver. Biochim Biophys Acta 428: 627–632

    PubMed  CAS  Google Scholar 

  • Grunnet N (1973) Oxidation of acetaldehyde by ratliver mitochondria in relation to ethanol oxidation and the transport of reducing equivalents across the mitochondrial membrane. Eur J Biochem 35: 236–243

    PubMed  CAS  Google Scholar 

  • Hald J, Jacobsen E (1948) The formation of acetaldehyde in the organism after ingestion of Antabuse (tetraethylthiuramdisulphide) and alcohol. Acta Pharmacol Toxicol 4: 305–310

    CAS  Google Scholar 

  • Haley T (1979) Disulfiram (tetraethylthiopeoxydicarbonic diamide): a reappraisal of its toxicity and therapeutic application. Drug Metab Rev 9: 319–335

    PubMed  CAS  Google Scholar 

  • Hansten PD (1975) Drug interactions, 3rd edn. Lea and Febinger, Philadelphia, pp 156–161

    Google Scholar 

  • Harada S, Misawa S, Agarwall DP, Goedde HW (1980) Liver alcohol dehydrogenase and aldehyde dehydrogenase in the Japanese: isozyme variation and its possible role in alcohol intoxication. Am J Hum Genet 32: 8–15

    PubMed  CAS  Google Scholar 

  • Harada S, Takagi S, Agarwall DP, Goedde HW (1982) Ethanol and aldehyde metabolism in alcoholics from Japan. Abstract 1st ISBRA Congress, Munich 1982. Alcoholism 6: 298

    Google Scholar 

  • Hasumura Y, Teschke R, Lieber CS (1975) Acetaldehyde oxidation by hepatic mitochondria. Decrease after chronic ethanol consumption. Science 189: 727–729

    PubMed  CAS  Google Scholar 

  • Himwich HE (1956) Alcohol and brain physiology. In: Thompson GN (ed) Alcoholism. Thomas, Springfield, pp 291–408

    Google Scholar 

  • Horton AA, Barrett MC (1975) Subcellular localization of aldehyde dehydrogenase in rat liver. Arch Biochem Biophys 167: 426–436

    PubMed  CAS  Google Scholar 

  • Hotson J, Langston W (1976) Disulfiram-induced encephalopathy. Arch Neurol 33: 141–142

    PubMed  CAS  Google Scholar 

  • Ijiri I (1974) Studies on the relationship between the concentrations of blood acetaldehyde and urinary cytecholamine and the symptoms after drinking alcohol. Jpn J Stud Alcohol 9: 35–39

    CAS  Google Scholar 

  • Ikawa M, Impraim CC, Wang G, Yoshida A (1983) Isolation and characterization of aldehyde dehydrogenase isozymes from usual and atypical human livers. J Biol Chem 258: 6282–6287

    PubMed  CAS  Google Scholar 

  • Inoue K, Ohdora Y, Yamasawa K (1978) Metabolism of acetaldehyde by human erythrocytes. Life Sci 23: 179–184

    PubMed  CAS  Google Scholar 

  • Inoue K, Rukunaga M, Yamasawa K (1980) Correlation between human erythrocyte aldehyde dehydrogenase activity and sensitivity to alcohol. Pharmacol Biochem Behav 13: 295–297

    PubMed  CAS  Google Scholar 

  • Iversen HL, Damgaard SE (1983) Determination of acetaldehyde in human blood using thiourea to inhibit ethanol interference. Clin Chim Acta 135: 151–158

    PubMed  CAS  Google Scholar 

  • Jacobsen E (1952) The metabolism of ethyl alcohol. Pharmacol Rev 4: 107–135

    PubMed  CAS  Google Scholar 

  • Jenkins WJ, Peters TJ (1978) Subcellular distribution and properties of aldehyde dehydrogenase in human liver. Clin Sci Mol Med 55: 11P–12 P

    Google Scholar 

  • Jenkins WJ, Peters TJ (1980) Selectively reduced hepatic acetaldehyde dehydrogenase in alcoholics. Lancet 1: 628–629

    PubMed  CAS  Google Scholar 

  • Jerntorp P, Ohlin H, Bergstrom B, Aimer LO (1980) Elevation of plasma acetaldehyde: the first step in CPAF? Diabetologia 19: 286

    Google Scholar 

  • Kenney WC (1982) Acetaldehyde adducts of phospholipids. Alcoholism 6: 412–416

    PubMed  CAS  Google Scholar 

  • Kiessling K-H (1962) The occurrence of acetaldehyde in various parts of the rat brain after alcohol injection, and its effect on the pyruvate oxidation. Exp Cell Res 27: 367–368

    PubMed  CAS  Google Scholar 

  • Kissin B, Platz A (1968) The use of drugs in the long term rehabilitation of chronic alcoholics. In: Efron DE (ed) Psychopharmacology: a review of progress 1957–1967. Public Health Service no 1836, Washington, pp 835–851

    Google Scholar 

  • Kitson TM (1977) The disulfiramethanol reaction. J Stud Alcohol 38: 96–113

    PubMed  CAS  Google Scholar 

  • Koe BK, Tenen SS (1969) Blockade of ethanol metabolism and reduced alcohol selection in C57BL mice by butyraldoxime. Fed Proc 28: 546

    Google Scholar 

  • Kobberling J, Weber M (1980) Facial flush after chlorpropamidealcohol and enkephalin. Lancet 1: 538–539

    PubMed  CAS  Google Scholar 

  • Kobberling J, Bengsch N, Briiggeboes B, Schwarck H, Tillil H, Weber M (1980) The chlorpropamide alcohol flush: lack of specificity for familial noninsulin dependent diabetes. Diabetologia 19: 359–363

    PubMed  CAS  Google Scholar 

  • Koivula T (1975) Subcellular distribution and characterization of human liver aldehyde dehydrogenase fractions. Life Sci 16: 1563–1570

    PubMed  CAS  Google Scholar 

  • Koivula T, Koivusalo M (1975) Partial purification and properties of a phenobarbital-induced aldehyde dehydrogenase of rat liver. Biochim Biophys Acta 410: 1–11

    PubMed  CAS  Google Scholar 

  • Koivula T, Lindros KO (1975) Effects of long term ethanol treatment on aldehyde and alcohol dehydrogenase activities in rat liver. Biochem Pharmacol 24: 1937–1942

    PubMed  CAS  Google Scholar 

  • Korsten MA, Matsuzaki S, Feinman L, Lieber CS (1975) High blood acetaldehyde levels after ethanol administration. N Engl J Med 292: 386–389

    PubMed  CAS  Google Scholar 

  • Kraemer RJ, Deitrich RA (1968) Isolation and characterization of human liver aldehyde dehydrogenase. J Biol Chem 243: 6402–6408

    PubMed  CAS  Google Scholar 

  • Kupari M, Eriksson CJP, Ylikahri R (1983a) Alcohol and the heart. Intense hemodynamic changes associated with alcohol flush in Orientals. Acta Med Scand 213: 91–98

    CAS  Google Scholar 

  • Kupari M, Lindros K, Hillbom M, Heikkila J, Ylikahri R (1983b) Cardiovascular effects of acetaldehyde accumulation after ethanol ingestion: their modification by β-adrenergic blockade and alcohol dehydrogenase inhibition. Alcoholism 7: 283–288

    PubMed  CAS  Google Scholar 

  • Lai S (1969) Metronidazole in the treatment of alcoholism. A clinical trial and review of the literature. J Stud Alcohol 30: 140–151

    Google Scholar 

  • Lamboeuf G, de Saint Blanquat G, Betache R (1981) Mucosal alcohol dehydrogenase - and aldehyde dehydrogenase - mediated ethanol oxidation in the digestive tract of the rat. Biochem Pharmacol 30: 542–545

    PubMed  CAS  Google Scholar 

  • Larsen JA, Madsen J (1962) Inhibition of ethanol metabolism by oral antidiabetics. Proc Soc Exp Biol Med 109: 120–122

    PubMed  CAS  Google Scholar 

  • Lebsack ME, Gordon ER, Lieber CS (1981) The effect of chronic ethanol consumption on aldehyde dehydrogenase activity in the baboon. Biochem Pharmacol 30: 2273–2277

    PubMed  CAS  Google Scholar 

  • Leslie RDG, Pyke DA (1978) Chlorpropamide-alcohol flushing: a dominantly inherited trait associated with diabetes. Br Med J 2: 1519–1521

    PubMed  CAS  Google Scholar 

  • Leslie RDG, Barnett AH, Pyke DA (1979) Chlorpropamide alcohol flushing and diabetic retinopathy. Lancet 1: 997–999

    PubMed  CAS  Google Scholar 

  • Lewis W, Schwartz L (1956) An occupational agent (w-butyraldoxime) causing reaction to alcohol. Med Ann District Columbia 25: 485–490

    CAS  Google Scholar 

  • Lieber CS (1980) Alcohol, liver injury and protein metabolism. Pharmacol Biochem Behav 13: 17–30

    PubMed  CAS  Google Scholar 

  • Lieber CS (1982) Alcohol and the liver. In: Lieber CS (ed) Medical disorders of alcoholism. Pathogenesis and treatment. Saunders, Philadelphia, pp 259–312 (Major problems in internal medicine, vol X II )

    Google Scholar 

  • Lindros KO (1978) Acetaldehyde: its metabolism and role in the actions of alcohol. In: Israel Y, Glaser FB, Kalant H, Popham RE, Schmidt W, Smart RG (eds) Research advances in alcohol and drug problems, vol 4. Plenum, New York, pp 111–176

    Google Scholar 

  • Lindros KO (1983) Human blood acetaldehyde levels: with improved methods, a clearer picture emerges. Alcoholism 7: 70–75

    PubMed  CAS  Google Scholar 

  • Lindros KO, Oshino N, Parilla R, Williamson JR (1974) Characteristics of ethanol and acetaldehyde oxidation on flavin and pyridine nucleotide fluorescence changes in perfused rat liver. J Biol Chem 249: 7956–7963

    PubMed  CAS  Google Scholar 

  • Lindros KO, Koivula T, Eriksson CJP (1975) Acetaldehyde levels during ethanol oxidation: a diet-induced change and its relation to liver aldehyde dehydrxogenases and redox states. Life Sci 17: 1589–1598

    PubMed  CAS  Google Scholar 

  • Lindros KO, Stowell A, Pikkarainen P, Salaspuro M (1980) Elevated blood acetaldehyde in alcoholics with accelerated ethanol elimination. Pharmacol Biochem Behav [Suppl 1] 13: 119–124

    Google Scholar 

  • Lindros KO, Stowell A, Salaspuro M (1981) The disulfiram (Antabuse)-alcohol reaction in male alcoholics: its efficient management by 4-methylpyrazole. Alcoholism 5: 528–530

    PubMed  CAS  Google Scholar 

  • Lundquist F (1970) Enzymatic pathways of ethanol metabolism. In: Tremolieres J (ed) International encyclopedia of alcohol and alcoholism, section 20, voll. Pergamon, Oxford, pp 95–116

    Google Scholar 

  • Lundquist F, Fugmann U, Rasmussen H, Svendsen I (1962) The metabolism of acetaldehyde in mammalian tissues. Reactions in rat liver suspensions under aerobic conditions. Biochem J 84: 281–286

    PubMed  CAS  Google Scholar 

  • Lundwall L, Backeland F (1971) Disulfiram treatment of alcoholism. J Nerv Ment Dis 153: 381–394

    PubMed  CAS  Google Scholar 

  • Magrinat G, Dolan JP, Biddy RL, Miller LD, Korol B (1973) Ethanol and methanol metabolites in alcohol withdrawal. Nature 244: 234–235

    PubMed  CAS  Google Scholar 

  • Majchrowics E, Mendelson JH (1970) Blood concentrations of acetaldehyde and ethanol in chronic alcoholics. Science 168: 633–634

    Google Scholar 

  • Marchner H, Tottmar O (1976a) Inhibition of the acetaldehyde dehydrogenases in rat liver by a cyanamide derivative present in a commercial standard diet for small animals. Acta Pharmacol Toxicol 39: 331–343

    CAS  Google Scholar 

  • Marchner H, Tottmar O (1976b) Influence of the diet on the metabolism of acetaldehyde in rats. Acta Pharmacol Toxicol 38: 59–71

    CAS  Google Scholar 

  • Marjanen L (1973) Comparison of aldehyde dehydrogenases from cytosol and mitochondria of rat liver. Biochim Biophys Acta 327: 238–246

    PubMed  CAS  Google Scholar 

  • Marshall AW, Cakebread KL, Jenkins WJ, Morgan MY (to be published) Blood acetaldehyde concentrations after oral ethanol in normal males and females. Alcohol and Alcoholism

    Google Scholar 

  • Matsuda Y, Baraona E, Salaspuro M, Lieber CS (1979) Effects of ethanol on liver microtubules and Golgi apparatus. Possible role in altered hepatic secretion of plasma proteins. Lab Invest 41: 455–463

    PubMed  CAS  Google Scholar 

  • Matsuzaki S, Lieber CS (1977) Increased susceptibility of hepatic mitochondria to the toxicity of acetaldehyde after chronic ethanol consumption. Biochem Biophys Res Commun 75: 1059–1065

    PubMed  CAS  Google Scholar 

  • McComb JA, Goldstein DB (1979) Quantitative comparison of physical dependence on tertiary butanol and ethanol in mice: correlation with lipid solubility. J Pharmacol Exp Ther 208: 113–117

    PubMed  CAS  Google Scholar 

  • Mizoi Y, Ijiri I, Tatsuno Y, Kijima T, Fujiwara S, Adachi J (1979) Relationship between facial flushing and blood acetaldehyde levels after alcohol intake. Pharmacol Biochem Behav 10: 303–311

    PubMed  CAS  Google Scholar 

  • Mohammed A, Olcott HS, Fraenkel-Conrat H (1949) The reaction of proteins with acetaldehyde. Arch Biochem 24: 270–280

    Google Scholar 

  • Nagasawa HT, Goon DJW, Demaster EG, Alexander CS (1977) Lowering of ethanol-derived circulating blood acetaldehyde in rats by D-penicillamine. Life Sci 20: 187–194

    PubMed  CAS  Google Scholar 

  • Noble EP, Tewari S (1977) Metabolic aspects of alcoholism in the brain. In: Lieber CS (ed) Metabolic aspects of alcoholism. University Park Press, Baltimore, pp 149–187

    Google Scholar 

  • Nuutinen H, Lindros KO, Salaspuro M (1983) Determinants of blood acetaldehyde level during ethanol oxidation in chronic alcoholics. Alcoholism 7: 163–168

    PubMed  CAS  Google Scholar 

  • Nuutinen HU, Salaspuro MP, Valle M, Lindros KO (1984) Blood acetaldehyde concentration gradient between hepatic and antecubital venous blood in ethanol-intoxicated alcoholics and controls. Eur J Clin Invest 14: 306–311

    PubMed  CAS  Google Scholar 

  • Ortiz A, Griffiths PJ, Littleton JA (1974) A comparison of the effects of chronic administration of ethanol and acetaldehyde to mice: evidence for a role of acetaldehyde in ethanol dependence. J Pharm Pharmacol 26: 249–260

    PubMed  CAS  Google Scholar 

  • Parrilla R, Ohkawa K, Lindros KO, Zimmerman U-JP, Kobayashi K, Williamson JR (1974) Functional compartmentation of acetaldehyde oxidation in rat liver. J Biol Chem 249: 4926–4933

    PubMed  CAS  Google Scholar 

  • Peachey JE, Maglana S, Robinson GM, Hemy M, Brien JF (1981) Cardiovascular changes during the calcium carbimide-ethanol interaction. Clin Pharmacol Ther 29: 40–46

    PubMed  CAS  Google Scholar 

  • Perman ES (1962) Studies on the Antabuse-alcohol reaction in rabbits. Acta Physiol Scand [Suppl 190] 55: 46

    Google Scholar 

  • Petersen D, Collins AC, Deitrich RA (1977) Role of liver cytosolic aldehyde dehydrogenase isozymes in control of blood acetaldehyde concentrations. J Pharmacol Exp Ther 201: 471–481

    PubMed  CAS  Google Scholar 

  • Pietruszko R, Vallari RC (1978) Aldehyde dehydrogenase in human blood. FEBS Lett 92: 82–91

    Google Scholar 

  • Pikkarainen PH, Salaspuro MP, Lieber CS (1979) A method for the determination of free-acetaldehyde in the plasma. Alcoholism 3: 259–261

    PubMed  CAS  Google Scholar 

  • Pikkarainen PH, Baraona E, Jauhonen P, Seitz HK, Lieber CS (1981a) Contribution of oropharynx microflora and of lung microsomes to acetaldehyde in expired air after alcohol ingestion. J Lab Clin Med 97: 631–638

    PubMed  CAS  Google Scholar 

  • Pikkarainen PH, Gordon ER, Lebsack ME, Lieber CS (1981b) Determinants of plasma free acetaldehyde level during the steady state oxidation of ethanol: effects of chronic ethanol feeding. Biochem Pharmacol 30: 799–802

    PubMed  CAS  Google Scholar 

  • Podgainy H, Bressler R (1968) Biochemical basis of the sulfonyl-urea-induced Antabuse syndrome. Diabetes 17: 679–683

    PubMed  CAS  Google Scholar 

  • Pyke DA, Leslie RDG (1978) Chlorpropamide-alcohol flushing: a definition of its relation to non-insulin-dependent diabetes. Br Med J 2: 1521–1522

    PubMed  CAS  Google Scholar 

  • Rahwan RG (1975) Toxic effects of ethanol: possible role of acetaldehyde, tetrahydroisoquinolines and tetrahydro-β-carbolines. Toxicol Appl Pharmacol 34: 3–27

    PubMed  CAS  Google Scholar 

  • Redmond G, Cohen G (1971) Induction of liver acetaldehyde dehydrogenase: possible role in ethanol tolerance after exposure to barbiturates. Science 171: 387–389

    PubMed  CAS  Google Scholar 

  • Reed TE, Kalant H, Gibbins RJ, Kapur BM, Rankin JG (1976) Alcohol and acetaldehyde metabolism in Caucasians, Chinese and Amerinds. Can Med Assoc J 115: 851–855

    PubMed  CAS  Google Scholar 

  • Roper M, Stock T, Dietrich RA (1976) Phenobarbital and tetrachlorodibenzo-β-dioxin induce different isoenzymes of aldehyde dehydrogenase. Fed Proc 35: 282

    Google Scholar 

  • Rucker E (1949) Aldehyde dehydrogenase, a diphosphopyridine nucleotide-linked enzyme. J Biol Chem 177: 883–892

    Google Scholar 

  • Salaspuro MP, Lieber CS (1978) Non-uniformity of blood ethanol elimination: its exaggeration after chronic consumption. Ann Clin Res 10: 294–297

    PubMed  CAS  Google Scholar 

  • Santi R, Ferrari M, Toth CE, Contessa AR, Fassina G, Bruni A, Luciani S (1967) Pharmacological properties of tetrahydropapaveroline. J Pharm Pharmacol 19: 45–51

    PubMed  CAS  Google Scholar 

  • Shaw S, Jayatilleke E, Ross WA, Gordon ER, Lieber CS (1981) Ethanol induced lipid peroxidation: potentiation by chronic alcohol feeding and attenuation by methionine. J Lab Clin Med 98: 417–425

    PubMed  CAS  Google Scholar 

  • Schreiber SS, Briden K, Oratz M, Rothschild MA (1972) Ethanol, acetaldehyde and myocardial protein synthesis. J Clin Invest 51: 2808–2819

    Google Scholar 

  • Schreiber SS, Oratz M, Rothschild MA, Reff F, Evans C (1974) Alcoholic cardiomyopathy. II. The inhibition of cardiac microsomal protein synthesis by acetaldehyde. J Mol Cell Cardiol 6: 207–213

    PubMed  CAS  Google Scholar 

  • Schuckit MA, Rayses V (1979) Ethanol ingestion: differences in blood acetaldehyde concentrations in relatives of alcoholics and controls. Science 203: 54–55

    PubMed  CAS  Google Scholar 

  • Stevens VJ, Fantl WJ, Newman CB, Sims RV, Cerami A, Peterson CM (1981) Acetaldehyde adducts with hemoglobin. J Clin Invest 67: 361–369

    PubMed  CAS  Google Scholar 

  • Stowell AR (1979) An improved method for the determination of acetaldehyde in human blood with minimal ethanol interference. Clin Chim Acta 98: 201–205

    PubMed  CAS  Google Scholar 

  • Stowell AR, Greenway RM, Batt RD (1977) Acetaldehyde formation during deproteinization of human blood samples containing ethanol. Biochem Med 8: 392–401

    Google Scholar 

  • Stowell AR, Lindros KO, Salaspuro MP (1980) Breath and blood acetaldehyde concentrations and their correlation during normal and calcium carbimide-modified ethanol oxidation in man. Biochem Pharmacol 29: 783–787

    PubMed  CAS  Google Scholar 

  • Suokas A, Kupari M, Pettersson J, Lindros KO (1983) Acetaldehyde, catecholamine and cardiovascular responses after the alcohol-aversive drug nitrefazole and ethanol. Acta Pharmacol Toxicol 53 [Suppl 2]: 7 (abstract)

    Google Scholar 

  • Tietz A, Lindber M, Kennedy EP (1964) A new pteridine-requiring enzyme system for the oxidation of glyceryl ethers. J Biol Chem 239: 4081–4090

    PubMed  CAS  Google Scholar 

  • Tottmar SOC, Pettersson H, Kiessling K-H (1973) The subcellular distribution and properties of aldehyde dehydrogenases in rat liver. J Biochem 135: 577–586

    CAS  Google Scholar 

  • Tottmar SOC, Kiessling KH, Forsling M (1974) Effects of phenobarbital and ethanol on rat liver aldehyde dehydrogenases. Acta Pharmacol Toxicol 35: 270–276

    CAS  Google Scholar 

  • Truitt EB (1971) Blood acetaldehyde levels after alcohol consumption by alcoholics and nonalcoholic subjects. In: Roach MK, Mclsaac WM, Creaven PJ (eds) Biological aspects of alcohol. University of Texas Press, Austin, pp 212–232

    Google Scholar 

  • Truitt EB, Duritz G (1966) The role of acetaldehyde in the actions of ethanol. In: Mackel PP (ed) Biochemical factors in alcoholism. Pergamon, New York, pp 61–69

    Google Scholar 

  • Truitt EB Jr, Walsh MJ (1971) The role of acetaldehyde in the actions of ethanol. In: Kissin H, Begleiter H (eds) The biology of alcoholism, vol I. Plenum, New York, pp 161–195

    Google Scholar 

  • Turner AJ, Baker KM, Alyeri S, Figerio A, Garratini S (1974) Tetrahydropapaveroline: formation in vivo and in vitro in rat brain. Life Sci 14: 2247–2257

    PubMed  CAS  Google Scholar 

  • Veitch RL, Lumeng L, Li T-K (1975) Vitamin B6 metabolism in chronic alcohol abuse. The effect of ethanol oxidation on hepatic pyridoxal 5-phosphate metabolism. J Clin Invest 55: 1026–1032

    CAS  Google Scholar 

  • Von Wartburg JP, Ris MM (1979) Determination of acetaldehyde in human blood. Experientia 35: 1682–1683

    Google Scholar 

  • Walkenstein SS, Weinhouse S (1953) Oxidation of aldehydes by mitochondria of rat tissues. J Biol Chem 200: 515–523

    PubMed  CAS  Google Scholar 

  • Wallgren H (1973) Neurochemical aspects of tolerance to and dependence on ethanol. Adv Exp Med Biol 35: 15–31

    CAS  Google Scholar 

  • Walsh MJ (1971) Role of acetaldehyde in the interactions of ethanol with neuroamines. In: Roach MK, Mclsaac WM, Creaven PJ (eds) Biological aspects of alcohol. University of Texas Press, Austin, p233

    Google Scholar 

  • Weiner H, King P, Hu JHJ, Bensch WR (1974) Mechanistic and enzymatic properties of liver aldehyde dehydrogenases. In: Thurman RG, Yonetani T, Williamson LR, Chance B (eds) Alcohol and aldehyde metabolizing systems. Academic, New York, pp 101–125

    Google Scholar 

  • Weissman A, Koe BK (1969) Drugs and deterrence of alcohol consumption. In: Chain CK (ed) Annual reports in medicinal chemistry. Academic, New York, pp 246–258

    Google Scholar 

  • Williams EE (1937) Effects of alcohol on workers with carbon disulfide. JAMA 109: 1472–1473

    Google Scholar 

  • Wolff PH (1973) Vasomotor sensitivity to alcohol in diverse mongoloid populations. Am J Hum Genet 25: 193–199

    PubMed  CAS  Google Scholar 

  • Zeiner AR, Paredes A, Christensen HD (1979) The role of acetaldehyde in mediating reactivity to an acute dose of ethanol among different racial groups. Alcoholism 3: 11–18

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Salaspuro, M., Lindros, K. (1985). Metabolism and Toxicity of Acetaldehyde. In: Seitz, H.K., Kommerell, B. (eds) Alcohol Related Diseases in Gastroenterology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70048-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70048-4_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-70050-7

  • Online ISBN: 978-3-642-70048-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics