Skip to main content

Screening and Assays for Neurotransmitters in the Insect Nervous System

  • Chapter

Part of the book series: Springer Series in Experimental Entomology ((SSEXP))

Abstract

Neurons in insects, as in other animal species, communicate with each other and with effector cells, such as gland cells and muscle fibers, mainly by means of chemical messengers (Hildebrand 1982). Chemical transmission of information between cells involves a number of recognized mechanisms including “fast” and “slow” chemical synaptic transmission mediated by neurotransmitter substances, relatively slower and more global transmission mediated by neurohormones, and fine-tuning of the activities of cells and synapses mediated by neuromodulators. These mechanisms share certain attributes: in every case, an appropriately stimulated nerve cell releases from its intracellular stores a chemical messenger (which may comprise one or more substances) that acts through a receptive mechanism in a target (which may be one or more cells) to alter its physiological state. For simplicity it is useful to refer to these chemical messengers, whether synaptic neurotransmitters, neurohormones, or neuromodulators, as transmitters.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barker DL, Herbert E, Hildebrand JG, Kravitz EA (1972) Acetylcholine and lobster sensory neurones. J Physiol (Lond) 226: 205 – 229

    CAS  Google Scholar 

  • Baxter CF, Torralba GF (1975) B-Aminobutyric acid and glutamate decarboxylase (L-glutamate 1-carboxy-lyase E.C. 4.1.1.15) in the nervous system of the cockroach, Periplaneta americana. I. Regional distribution and properties of the enzyme. Brain Res 84: 383–397

    Article  PubMed  CAS  Google Scholar 

  • Benson JR, Hare PE (1975) o-Phthalaldehyde: fluorogenic detection of primary amines in the picomole range. Comparison with fluorescamine and ninhydrin. Proc Natl Acad Sci USA 72: 619–622

    Article  PubMed  CAS  Google Scholar 

  • Bernasconi R, Bittiger H, Heid J, Martin P (1980) Determination of GABA levels by a [3H]muscimol radioreceptor assay. J Neurochem 34: 614–618

    Article  PubMed  CAS  Google Scholar 

  • Campos-Ortega JA (1974) Autoradiographic localization of 3H-y-aminobutyric acid uptake in the lamina ganglionaris of Musca and Drosophila. Z Zellforsch 147:415–431

    Google Scholar 

  • Caudill WL, Papach LA, Wightman RM (1982) Measurement of brain GABA with LCEC. Current Separations, BioAnalytical Systems, West Lafayette IN, 4: 59–61

    Google Scholar 

  • Chang J-Y, Knecht R, Braun DG (1983) Amino acid analysis in the picomole range by pre-column derivatization and high-performance liquid chromatography. In: Hirs CHW, Timasheff SN (eds) Methods in Enzymology, vol 91, Parti. Academic, New York, pp 41–48

    Google Scholar 

  • Chang M-H, Brady UE, Cueman MK (1981) Quantitation of acetylcholine in insect tissues by gas chromatography. J Georgia Entomol Soc 16: 431 – 436

    CAS  Google Scholar 

  • Clarke BS, Donnellan JF (1982) Concentrations of some putative neurotransmitters in the CNS of quick-frozen insects. Insect Biochem 12:623–638

    Google Scholar 

  • Cottrell GA, Powell B, Stanton M (1970) A simple method for measuring a picogram of acetylcholine using the clam (Mya arenaria) heart. Br J Pharmacol 40: 866 - 870

    PubMed  CAS  Google Scholar 

  • Coutts RT, Baker GB (1982) Gas chromatography. In: Lajtha A (ed) Handbook of neuro-chemistry, 2nd edn, vol 2. Plenum, New York, pp 429 – 448

    Google Scholar 

  • Davis TP, Gehrke CW, Gehrke CW Jr etal. (1978) High-performance liquid chromatographic separation and fluorescence measurement of biogenic amines in plasma, urine and tissue. Clin Chem 24: 1317–1324

    PubMed  CAS  Google Scholar 

  • Dawson RMC, Elliott DC, Elliott WH, Jones KM (eds) (1969) Data for biochemical research, 2nd edn. Oxford University Press, New York, p 560

    Google Scholar 

  • DeJong C, Hughes GJ, Van Wieringen E, Wilson KJ (1982) Amino acid analyses by high- performance liquid chromatography. An evaluation of the usefulness of precolumn Dns derivatization. J Chromatogr 241:345–359

    Google Scholar 

  • Denburg JL, Barker DL (1982) Specific reinnervation of cockroach leg muscles by octopaminergic, dorsal unpaired median neurons. J Neurobiol 13:551–557

    Google Scholar 

  • Elias MS, Evans PD (1983) Histamine in the insect nervous system: distribution, synthesis and metabolism. J Neurochem 41: 562 – 568

    Article  PubMed  CAS  Google Scholar 

  • Enna SJ, Snyder SH (1976) A simple, sensitive and specific radioreceptor assay for endogenous GABA in brain tissue. J Neurochem 26:221–224

    Article  PubMed  CAS  Google Scholar 

  • Enna SJ, Wood JH, Snyder SH (1977) E-Aminobutyric acid (GABA) in human cerebrospinal fluid: radioreceptor assay. J Neurochem 28:1121–1124

    Article  PubMed  CAS  Google Scholar 

  • Gerschenfeld HM (1973) Chemical transmission in invertebrate central nervous systems and neuromuscular junctions. Physiol Rev 53:1–119

    PubMed  CAS  Google Scholar 

  • Giller E, Schwartz JH (1971) Choline acetyltransferase in identified neurons of abdominal ganglion of Aplysia californica. J Neurophysiol (Bethesda) 34:93– 107

    Google Scholar 

  • Goldberg AM, McCaman RE (1973) The determination of picomole amounts of acetylcholine in mammalian brain. J Neurochem 20:1–8

    Article  PubMed  CAS  Google Scholar 

  • Goldberg AM, McCaman RE (1974) An enzymatic method for the determination of picomole amounts of choline and acetylcholine. In: Hanin I (ed) Choline and acetylcholine. (Handbook of chemical assay methods). Raven, New York, pp 47 –61

    Google Scholar 

  • Grace TDC (1962) Establishment of four strains of cells from insect tissues grown in vitro. Nature (Lond) 195: 788 – 789

    Article  CAS  Google Scholar 

  • Graham LT, Aprison MH (1966) Fluorometric determination of aspartate, glutamate, and 1-aminobutyrate in nerve tissue using enzymic methods. Anal Biochem 15:487–497

    Google Scholar 

  • Hanin I (ed) (1974) Choline and acetylcholine. (Handbook of chemical assay methods). Raven, New York

    Google Scholar 

  • Hare PE (1977) Subnanomole-range amino acid analysis. In: Hirs CHW, Timasheff SE (eds) Methods in enzymology, vol 47. Academic, New York, pp 3 –18

    Google Scholar 

  • Harrow ID, Hildebrand JG (1982) Synaptic interactions in the olfactory lobe of the moth, Manduca sexta. Soc Neurosci Abstr 8: 528

    Google Scholar 

  • Hildebrand JG (1974) Acetylcholine and choline. In: Bergmeyer HU (ed) Methods of enzymatic analysis, 2nd English edn, vol 4. Chemie, pp 1819- 1824

    Google Scholar 

  • Hildebrand JG (1982) Chemical signalling in the insect nervous system. In: Neuropharmacology in insects. Ciba Foundation Symposium, vol 88. Pitman, London, pp 5–11

    Google Scholar 

  • Hildebrand JG, Maxwell GD (1980) Neurochemical explorations of the central nervous system of the moth, Manduca sexta and especially of the antennal and visual pathways. In: Insect neurobiology and pesticide action. (Neurotox 79), Society for Chemical Industry, London, pp 101 –107

    Google Scholar 

  • Hildebrand JG, Barker DL, Herbert E, Kravitz EA (1971) Screening for neurotransmitters: a rapid radiochemical procedure. J Neurobiol 2: 231–246

    Article  PubMed  CAS  Google Scholar 

  • Hildebrand JG, Townsel JG, Kravitz EA (1974) Distribution of acetylcholine, choline, choline acetyltransferase and acetylcholinesterase in regions and single identified axons of the lobster nervous system. J Neurochem 23:951–963

    Google Scholar 

  • Hildebrand JG, Hall LM, Osmond BC (1979) Distribution of binding sites for 125I-labeled oc-bungarotoxin in normal and deafferented antennal lobes of Manduca sexta. Proc Natl Acad Sci USA 76: 499 – 503

    Article  PubMed  CAS  Google Scholar 

  • Holman GM, Cook BJ (1982) Physiological amino acids of the nervous system of the stable fly, Stomoxys calcitrans. Comp Biochem Physiol 71 A: 23–27

    Google Scholar 

  • Hoskins SG, Hildebrand JG (1983) Neurotransmitter histochemistry of neurons in the antennal lobes of Manduca sexta. Soc Neurosci Abstr 9: 216

    Google Scholar 

  • Hoskins SG, Kingan TG, Christensen TA, Hildebrand JG (1984) Mapping GABA-like immunoreactivity in antennal lobes of the moth, Manduca sexta. Soc Neurosci Abstr 10

    Google Scholar 

  • Hoyle G, Barker DL (1975) Synthesis of octopamine by insect dorsal median unpaired neurons. J Exp Zool 193: 433 – 439

    Article  PubMed  CAS  Google Scholar 

  • Irving SN, Osborne MP, Wilson RG (1976) Virtual absence of L-glutamate from the haemoplasm of arthropod blood. Nature (Lond) 263:431 –433

    Article  CAS  Google Scholar 

  • Jabbar A, Strang RHC (1980) A method for quantitative study of the amines and amino acids of the insect nervous system. In: Insect neurobiology and pesticide action. (Neurotox 79). Society for Chemical Industry, London, pp 261 –266

    Google Scholar 

  • Jakoby WB, Scott EM (1959) Aldehyde oxidation III. Succinic semialdehyde dehydrogenase. J Biol Chem 234: 937–940

    PubMed  CAS  Google Scholar 

  • Jenden DJ, Hanin I, Lamb SI (1968) Gas chromatographic microestimation of acetylcholine and related compounds. Anal Chem 40: 125–128

    Article  PubMed  CAS  Google Scholar 

  • Joseph MH, Davies P (1982) Electrochemical detection of amino acids. Current Separations, BioAnalytical Systems, West Lafayette IN, 4:62–65

    Google Scholar 

  • Jungreis AM, Omilianowski DR (1980) J-Aminobutyric acid and glutamic acid in Manduca sexta: proposed roles in insect development. Comp Biochem Physiol 67 C: 173 – 185

    Google Scholar 

  • Kingan TG (1984) Development of GABA levels in the CNS of Manduca sexta. In: Borkovec AB, Kelly TJ (eds) Insect neurochemistry and neurophysiology. Plenum, New York, pp 405 – 407

    Google Scholar 

  • Kingan TG, Hildebrand JG (1982) GABA in the antennal lobes of metamorphosing and mature Manduca sexta. Soc Neurosci Abstr 8: 988

    Google Scholar 

  • Kravitz EA, Potter DD (1965) A further study of the distribution of K-aminobutyric acid between excitatory and inhibitory axons of the lobster. J Neurochem 12:323–328

    Google Scholar 

  • P, Mopper K (1979) High performance liquid chromatographic determination of subpicomole amounts of amino acids by precolumn fluorescence derivatization with o-phthaldialdehyde. Anal Chem 51: 1667 – 1674

    Google Scholar 

  • Livingstone MS, Tempel BL (1983) Genetic dissection of monoamine neurotransmitter synthesis in Drosophila. Nature (Lond) 303:67–70

    Google Scholar 

  • Lovell RA,Elliott KAC (1963) The y-aminobutyric acid and Factor I content of the brain. J Neurochem 10:479 – 488

    Google Scholar 

  • OH, Roberts NR, Kapphahn JI (1957) The fluorimetric measurement of pyridine nucleotides. J Biol Chem 224:1047– 1064

    Google Scholar 

  • Lowry OH, Passonneau JV, Schulz DW, Rock MK (1961) The measurement of pyridine nucleotides by enzymatic cycling. J Biol Chem 236:2746–2755

    Google Scholar 

  • Maxwell GD, Hildebrand JG (1981) Anatomical and neurochemical consequences of de- afferentation in the development of the visual system of the moth, Manduca sexta. J Comp Neurol 195: 667 – 680

    Article  PubMed  CAS  Google Scholar 

  • Maxwell GD, Moore MM, Hildebrand JG (1980) Metabolism of tyramine in the central 22 nervous system of the moth, Manduca sexta. Insect Biochem 10:657–665

    Google Scholar 

  • Maxwell GD, Tait JF, Hildebrand JG (1978) Regional synthesis of neurotransmitter candidates in the CNS of the moth, Manduca sexta. Comp Biochem Physiol 61 C: 109–119

    Google Scholar 

  • McCaman RE, Stetzler J (1977) Radiochemical assay for ACh: modifications for sub-pico-mole measurements. J Neurochem 28: 669 – 671

    Article  PubMed  CAS  Google Scholar 

  • McCaman RE, Dewhurst SA, Goldberg AM (1971) Choline kinase assay and partial purification. Anal Biochem 42: 171 – 177

    Article  PubMed  CAS  Google Scholar 

  • Neuhoff V (1982) Selected micromethods for use in neurochemistry. In: Lajtha A (ed) Handbook of neurochemistry, 2nd edn, vol 2. Plenum, New York, pp 349–395

    Google Scholar 

  • Osborne NN, Neuhoff V (1974) Amino acid and serotonin content in the nervous system, muscle and blood of the cockroach, Periplaneta americana. Brain Res 80:251 –264

    Google Scholar 

  • Otsuka M, Obata K, Miyata Y, Tanaka Y (1971) Measurement of y-aminobutyric acid in isolated nerve cells of cat central nervous system. J Neurochem 18:287–295

    Google Scholar 

  • Philips SR (1982) Radioenzymatic analyses. In: Lajtha A (ed) Handbook of neurochemistry, 2nd edn, vol 2. Plenum, New York, pp 103 – 132

    Google Scholar 

  • Pichon Y (1974) The pharmacology of the insect nervous system. In: Rockstein M (ed) The physiology of insecta, 2nd edn, vol 4. Academic, New York, pp 101 - 174

    Google Scholar 

  • Pishak MR, Phillips AT (1979) A modified radioisotopic assay for measuring glutamine synthetase activity in tissue extracts. Anal Biochem 94: 82 – 88

    Article  PubMed  CAS  Google Scholar 

  • Pitman RM (1971) Transmitter substances in insects: a review. Comp Gen Pharmacol 2: 347 – 371

    Article  PubMed  CAS  Google Scholar 

  • Potter PE, Meek JL, Neff NH (1983) Acetylcholine and choline in neuronal tissue measured by HPLC with electrochemical detection. J Neurochem 41: 188 - 194

    Article  PubMed  CAS  Google Scholar 

  • Prescott DJ, Hildebrand JG, Sanes JR, Jewett S (1977) Biochemical and developmental studies of acetylcholine metabolism in the central nervous system of the moth, Manduca sexta. Comp Biochem Physiol 56 C: 77–84

    Google Scholar 

  • Reid WD, Haubrich DR, Krishna G (1971) Enzymic radioassay for acetylcholine and choline in brain. Anal Biochem 42: 390 – 397

    Article  PubMed  CAS  Google Scholar 

  • Sanes JR, Hildebrand JG (1976) Acetylcholine and its metabolic enzymes in developing antennae of the moth, Manduca sexta. Dev Biol 52:105–120

    Google Scholar 

  • Sanes JR, Prescott DJ, Hildebrand JG (1977) Cholinergic neurochemical development of normal and deafferented antennal lobes during metamorphosis of the moth, Manduca sexta. Brain Res 119: 389 – 402

    Article  PubMed  CAS  Google Scholar 

  • Sattelle DB (1977) Cholinergic synaptic transmission in invertebrate central nervous systems. Biochem Soc Trans 5: 849 – 852

    PubMed  CAS  Google Scholar 

  • Scott RPW (1980) Microbore columns in liquid chromatography. J Chromatogr Sci 18: 49 – 54

    CAS  Google Scholar 

  • Seiler N (1970) Use of the dansyl reaction in biochemical analysis. In: Glick D (ed) Methods of biochemical analysis, vol 18. Wiley Interscience, New York, pp 259 – 337

    Chapter  Google Scholar 

  • Shea PA, Aprison MH (1973) An enzymatic method for measuring picomole quantities of acetylcholine and choline in CNS tissue. Anal Biochem 56: 165–177

    Article  PubMed  CAS  Google Scholar 

  • Smith JE, Lane LD, Shea PA, McBride WJ, Aprison MH (1975) A method for concurrent measurement of picomole quantities of acetylcholine, choline, dopamine, norepinephrine, serotonin, 5-hydroxytryptophan, 5-hydroxyindoleacetic acid, tryptophan, tyrosine, glycine, aspartate, glutamate, alanine, and gamma-aminobutyric acid in single tissue samples from different areas of rat central nervous system. Anal Biochem 64: 149–169

    Article  PubMed  CAS  Google Scholar 

  • Stein S (1982) High-performance liquid chromatography. In: Lajtha A (ed) Handbook of neurochemistry, 2nd edn, vol 2. Plenum, New York, pp 449 – 468

    Google Scholar 

  • Tapuhi Y, Schmidt DE, Lindner W, Karger BL (1981) Dansylation of amino acids for high-performance liquid chromatography analysis. Anal Biochem 115: 123 – 129

    Article  PubMed  CAS  Google Scholar 

  • Taylor DP, Newburgh RW (1979) The synthesis and content of neurotransmitters and their effect on cyclic nucleotide accumulation in the central nervous system of Manduca sexta. Insect Biochem 9:265–272

    Google Scholar 

  • Torn M, Aprison MH (1966) Brain acetylcholine studies: a new extraction procedure. J Neurochem 13: 1533 – 1544

    Article  Google Scholar 

  • Usherwood PNR (1978) Amino acids as neurotransmitters. Adv Comp Physiol Biochem 7: 227 – 309

    PubMed  CAS  Google Scholar 

  • Whittaker VP (1963) Identification of acetylcholine and related choline esters of biological origin. In: Koelle GB (ed) Cholinesterases and anticholinesterase agents. Springer, Berlin Heidelberg New York, pp 1–39 ( Handbuch der experimentellen Pharmakologie, Suppl 15 )

    Google Scholar 

  • Woods KR, Wang K-T (1967) Separation of dansyl-amino acids by polyamide layer chromatography. Biochim Biophys Acta 133: 369 – 370

    PubMed  CAS  Google Scholar 

  • Wu C-F, Berneking JM, Barker DL (1983) Acetylcholine synthesis and accumulation in the CNS of Drosophila larvae: Analysis of shibirets, a mutant with a temperature-sensitive block in synaptic transmission. J Neurochem 40:1386– 1396

    Google Scholar 

  • Wu C-F, Suzuki N, Poo M-M (1983) Dissociated neurons from normal and mutant Drosophila larval central nervous system in cell culture. J Neurosci 3:1888–1899

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kingan, T.G., Hildebrand, J.G. (1985). Screening and Assays for Neurotransmitters in the Insect Nervous System. In: Breer, H., Miller, T.A. (eds) Neurochemical Techniques in Insect Research. Springer Series in Experimental Entomology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70045-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70045-3_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-70047-7

  • Online ISBN: 978-3-642-70045-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics