Skip to main content

Differential Cell Loss in (Peptide) Neurons in the Anterior Hypothalamus with Aging and Alzheimer’s Disease: Lack of Changes in Cell Density

  • Conference paper
Neurology

Abstract

Cell loss is one of the characteristic symptoms of aging of the central nervous system. In addition, it is one of the neuropathological features in Alzheimer’s disease (AD) and is commonly believed to underly the impairment of brain function found under these circumstances. Cell loss does not occur in a homogeneous way throughout the central nervous system [1] and it has often been proposed that ontogenetically and phylogenetically new structures would be affected more severely by cell loss in senescence and AD than would older structures [2]. However, few reliable data are available on this topic, while — to make things worse — cell loss in the human brain has generally been estimated by neuropathologists on the basis of the cell density in just a few microscopic sections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brody H (1973) Aging of the vertebrate brain. In: Rockstein M (ed) Development and aging in the nervous system. Academic, London, pp 121–133

    Google Scholar 

  2. Brody H, Vijayashanker N (1977) Cell loss with aging. In: Nandy K, Sherwin I (eds) The aging brain and senile dementia. Plenum, New York, pp 15–21

    Google Scholar 

  3. Coyle JT, Price DL, De Long MR (1983) Alzheimer’s disease: A disorder of cortical cholinergic innervation. Science 219: 1184–1190

    Article  PubMed  CAS  Google Scholar 

  4. De Vries GJ et al. (eds) (1984) Progress in brain research, vol 61. Elsevier Science, Amsterdam

    Google Scholar 

  5. De Wied D, Van Ree JM (1984) Neuropeptides, mental performance and aging. Life Sci 31: 1691–1697

    Google Scholar 

  6. Dierickx K, Vandesande F (1977) Immunocytochemical localization of the vasopressinergic and the oxytocinergic neurons in the human hypothalamus. Cell Tissue Res 184: 15–27

    Article  PubMed  CAS  Google Scholar 

  7. Durso R, Fedio P, Brouwers P, Cox C, Martin AJ, Ruggieri SA, Tamminga CA, Chase TN (1982) Lysine vasopressin in Alzheimer disease. Neurology 32: 674–677

    PubMed  CAS  Google Scholar 

  8. Faccinetti F, Nappi G, Petraglia F, Martignoni E, Sinforiani E, Genazzani AR (1984) Central ACTH deficit in degenerative and vascular dementia. Life Sci 35: 1691–1697

    Article  Google Scholar 

  9. Fliers E, Swaab DF (1983) Activation of vasopressinergic and oxytocinergic neurons during aging in the Wistar rat. Peptides 4: 165–170

    Article  PubMed  CAS  Google Scholar 

  10. Fliers E, Swaab DF (1986) Neuropeptide changes in aging and Alzheimer’s disease. In: Aging of the Brain and Alzheimer Disease. Prog Brain Res (in press)

    Google Scholar 

  11. Fliers E, Swaab DF, Pool ChrW, Verwer RWH (1985) The vasopressin and oxytocin neurons in the human supraoptic and paraventricular nucleus; changes with aging and senile dementia. Brain Res 342: 45–53

    Article  PubMed  CAS  Google Scholar 

  12. Friedman SM, Friedman CL (1957) Salt and water balance in ageing rats. Gerontology 1: 107–121

    Article  CAS  Google Scholar 

  13. Frolkis W, Golovchenko SF, Medved VI, Frolkis RA (1982) Vasopressin and cardiovascular system in aging. Gerontology 28: 290–302

    Article  PubMed  CAS  Google Scholar 

  14. Gorski RA, Gordon JH, Shryne JE, Southam AM (1978) Evidence for a morphological sex difference within the medial preoptic area of the rat brain. Brain Res 148: 333–346

    Article  PubMed  CAS  Google Scholar 

  15. Hoogendijk JE, Fliers E, Swaab DF, Verwer RWH (1985) Activation of vasopressin neurons in the human supraoptic and paraventricular nucleus in senescence and dementia. J Neurol Sci 69: 291–299

    Article  PubMed  CAS  Google Scholar 

  16. Jolles J (1983) Vasopressin-like peptides and the treatment of memory disorders in man. In: Cross BA, Leng G (eds) The neurohypophysis: Structure function and control progress in brain research, vol 60. Elsevier, Amsterdam, pp 169–182

    Chapter  Google Scholar 

  17. Kirkland J, Lye M, Goddard C, Vargas E, Davies I (1984) Plasma arginine vasopressin in dehydrated elderly patients. Clin Endocrinol 20: 451–456

    Article  Google Scholar 

  18. Legros JJ (1975) The radioimmunoassay of human neurophysins: contribution to the understanding of the physiopathology of neurohypophyseal function. Ann NY Acad Sci 248: 281–303

    Article  PubMed  CAS  Google Scholar 

  19. Legros JJ (1979) The neurohypophyseal peptides: biosynthesis, biological role, and prospects of use in neuropsychiatric therapy. Triangle 18: 17–30

    PubMed  CAS  Google Scholar 

  20. Legros JJ, Gilot P, Seron X, Claessens J, Adam A, Moegen JM, Audibert A, Berchier P (1978) Influence of vasopressin on learning and memory. Lancet i: 41–42

    Google Scholar 

  21. Legros JJ, Gilot P, Schmitz S, Bruwier M, Mantanus H, Timsit-Berthier M (1980) Neurohypophyseal peptides and cognitive function: a clinical approach. In: Brambilla F, Racagni G, de Wied D (eds) Progress in psychoneuroendocrinology. Elsevier/North Holland Biomedical, Amsterdam, pp 325–337

    Google Scholar 

  22. Le Moal M, Dantzer R, Mormede P, Baduel A, Lebrun C, Ettenberg A, Van der Kooy D, Wenger J, Deyo S, Koob GF, Bloom FE (1984) Behavioral effects of peripheral ad-ministration of arginine vasopressin: A review of our search for a mode of action and a hypothesis. Psychoneuroendocrinology 9: 319–341

    Article  PubMed  Google Scholar 

  23. Lydic R, Schoene WC, Czeisler CA, Moore-Ede MC (1980) Suprachiasmatic region of the human hypothalamus: homolog to the primate circadian pacemaker? Sleep 2: 355–361

    PubMed  CAS  Google Scholar 

  24. Mann DMA, Yates PO, Marcynicek B (1985) Some morphometric observations on the cerebral cortex and hippocampus in presenile Alzheimer’s disease, senile dementia of Alzheimer’s type and Down’s syndrome in middle age. J Neurol Sci 69: 139–159

    Article  PubMed  CAS  Google Scholar 

  25. Pickard GE, Turek FW (1983) The suprachiasmatic nuclei: two circadian clocks? Brain Res 268: 201–210

    Article  PubMed  CAS  Google Scholar 

  26. Prinz PN, Vitaliano PP, Vitiello MV, Bokan J, Raskind M, Perskind E, Gerber C (1982) Sleep EEG and mental function changes in senile dementia of the Alzheimer’s type. Neurobiol Aging 3: 361–370

    Article  PubMed  CAS  Google Scholar 

  27. Raisman G, Field PM (1971) Sexual dimorphism in the preoptic area of the rat. Science 173: 731–733

    Article  PubMed  CAS  Google Scholar 

  28. Swaab DF (1982) Neuropeptides, their distribution and function in the brain. Brain Res 55: 97–123

    Article  CAS  Google Scholar 

  29. Swaab DF, Fliers E (1985) A sexually dimorphic nucleus in the human brain. Science 228: 1112–1115

    Article  PubMed  CAS  Google Scholar 

  30. Swaab DF, Fliers E, Fisser B (1984) The vasopressin containing neuron in the human brain. Changes during aging and senile dementia In: Knook DL, Galderini G, Amaducci L (eds) Aging of the brain and senile dementia: The inventory of EEC potentialities, pp 71–78

    Google Scholar 

  31. Swaab DF, Fliers E, Partiman TS (1985) The suprachiasmatic nucleus of the human brain in relation to sex age and senile dementia. Brain Res 342: 37–44

    Article  PubMed  CAS  Google Scholar 

  32. Swaab DF, Fliers E, Ravid R (1986) The vasopressin neuron in the aging human and rat brain Suny-meeting (USA). Handbook of comparative opioid and related neuropeptide mechanisms, vol II. CRC, Boca Raton (FL) (in press)

    Google Scholar 

  33. Swaab DF, Pool CW, Nijvelt F (1975) Immunofluorescence of vasopressin and oxytocin in the rat hypothalamo-neurohypophyseal system. J Neural Transm 36: 195–215

    Article  PubMed  CAS  Google Scholar 

  34. Tinklenberg JR, Pigade R, Pfefferbaum A, Berger PA (1982) Vasopressin peptides and dementia. In: Corkin S, Davis KL, Growdon JH, Usdin E, Wurtman RL (eds) Alzheimer’s disease: A report of progress in research. Raven, New York, pp 461–466

    Google Scholar 

  35. Van den Pol AN, Powley T (1979) A fine-grained anatomical analysis of the role of the rat suprachiasmatic nucleus in circadian rhythms of feeding and drinking. Brain Res 160: 307–326

    Article  PubMed  Google Scholar 

  36. Van Gool WA, Mirmiran M (1983) Age-related changes in the sleep pattern of male adult rats. Brain Res 279: 394–398

    Article  PubMed  Google Scholar 

  37. Weingartner N, Kaye W, Gold Ph, Smallberg S, Peterson R, Gillin JC, Ebert M (1981) Vasopressin treatment of cognitive dysfunction in progressive dementia. Life Sci 29: 2721–2726

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Swaab, D.F., Fliers, E., Goudsmit, E. (1986). Differential Cell Loss in (Peptide) Neurons in the Anterior Hypothalamus with Aging and Alzheimer’s Disease: Lack of Changes in Cell Density. In: Poeck, K., Freund, HJ., Gänshirt, H. (eds) Neurology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70007-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70007-1_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-70009-5

  • Online ISBN: 978-3-642-70007-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics