Skip to main content

Parameterization of Turbulent Transport in Swirling Flows — I: Theoretical Considerations

  • Conference paper
Turbulent Shear Flows 4

Abstract

A second order closure scheme is proposed for turbulent transport in swirling flows. Specifically, a scheme is constructed according to the same principles that led to the successful description of buoyancy-driven turbulent flows (Zeman, 1975; Zeman and Lumley, 1976 a, b, c; Lumley et al. 1978). In the narrow gap approximation the scheme takes on a particularly simple form, which can be rationalized by a simple physical model.

Supported in part by the U.S. Office of Naval Research under the following programs: Physical Oceanography (Code 422PO), Fluid Dynamics (Code 438), Power (Code 473); in part by the U.S. National Science Foundation under grant no. ATM 79-22006 and CME 79-19817; and in part by the U.S. Air Force Office of Scientific Research

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Chigier, N. A., Chervinsky, A. (1967): Experimental investigation of swirling vortex motion in jets. J. Appl. Mech. 34, 443

    Article  Google Scholar 

  • Corrsin, S. (1972): Comment on transport equations in turbulence. Phys. Fluids 16, 157

    Article  ADS  Google Scholar 

  • Eskinazi, S., Yeh, H. (1956): An investigation on fully developed turbulent flows in a curved channel. J. Aersp. Sci. 23, 23

    MATH  Google Scholar 

  • Janicka, J., Lumley, J. L. (1981 a): A note concerning the pressure transport terms in second order modeling, (in preparation)

    Google Scholar 

  • Janicka, J., Lumley, J. L.: Second order modeling in non-constant density flows. Sibley School of Mechanical and Aerospace Engineering Report No. FDA-81-01. Cornell Univ. Ithaca, NY 1981 b)

    Google Scholar 

  • Jones, W. P., Launder, B. E. (1973): The calculation of low-Reynolds number phenomena with a two-equation model of turbulence. Int. J. Heat Mass Transf. 16, 1119

    Article  Google Scholar 

  • Kline, S. J., Cantwell, B. J., Lilley, G. M. (eds.): The 1980-81 AFOSR-HTTM-Stanford Conference on Complex Turbulent Shear Flows: Comparison of Computation and Experiment. ( Stanford University, Thermosciences Div. Stanford CA, 1981 )

    Google Scholar 

  • Launder, B. E., Morse, A.: Numerical Prediction of Axisymmetric Free Shear Flows with a Second Order Reynolds Stress Closure, in Turbulent Shear Flows 1, ed. by F. Durst, B. E. Launder, F. W. Schmidt, J. H. Whitelaw ( Springer, Berlin, Heidelberg, New York 1979 ) p. 279

    Google Scholar 

  • Launder, B. E., Priddin, C. H., Sharma, B. I. (1977): The calculation of turbulent boundary layers on spinning and curved surfaces. J. Fluids Engineering 99, 231

    Article  Google Scholar 

  • Lezius, D., Johnston, J. P. (1972): The structure and stability of turbulent wall layers in rotating channel flow. J. Fluid Mech. 56, 533

    Article  ADS  Google Scholar 

  • Lumley, J. L.: Stochastic Tools in Turbulence. ( Academic, New York 1970 )

    MATH  Google Scholar 

  • Lumley, J. L.: Computational Modeling of Turbulent Flows, in Advances in Applied Mechanics Vol. 18, ed. by C.-S. Yih ( Academic, New York 1978 ) p. 123

    Google Scholar 

  • Lumley, J. L., Panofsky, H.A.: The Structure of Atmospheric Turbulence. ( Interscience, New York 1964 )

    Google Scholar 

  • Lumley, J. L., Zeman, O., Siess, J. (1978): The influence of buoyancy on turbulent transport. J. Fluid Mech. 84, 581

    Article  MathSciNet  ADS  Google Scholar 

  • Morse, A. (1980): Axisymmetric turbulent shear flows with and without swirl. Ph. D. Thesis, University of London

    Google Scholar 

  • Pratte, B. D., Keffer, J. F. (1972): The swirling turbulent jet. J. Basic Eng. 94, 739

    Article  Google Scholar 

  • Pellew, A., Southwell, R. V. (1940): On maintained convective motion in a fluid heated from below. Proe. Roy. Soc. A176, 312

    Article  MathSciNet  ADS  Google Scholar 

  • Ramaprian, B. R., Shivaprasad, B. G. (1981): The instantaneous structure of mildly curved turbulent boundary layers. Submitted for publication to J. Fluid Mech.

    Google Scholar 

  • Rose, W. G. (1962): A swirling round turbulent jet. J. Appi. Mech. 29, 615

    Article  MATH  Google Scholar 

  • Schetz, J. A.: Injection and Mixing in Turbulent Flow, Progress in Astronautics and Aeronautics, Vol. 68, ed. by M. Summerfield ( American Institute of Aeronautics and Astronautics, New York 1980 )

    Google Scholar 

  • Taulbee, D. B., Lumley, J. L.: Prediction of the turbulent wake with a second order closure model. Sibley School of Mechanical and Aerospace Engineering Report No. FDA-81-04. ( Cornell University Ithaca, NY 1981 )

    Google Scholar 

  • Taylor, G. I. (1923): Stability of a viscous fluid contained between rotating cylinders. Phil. Trans. 223, 289

    Article  ADS  MATH  Google Scholar 

  • Traugott, S. C. (1958): Influence of solid body rotation on screen-produced turbulence. NACA TN 4135

    Google Scholar 

  • Wigeland, R. A., Nagib, H. M.: Grid generated Turbulence with and without rotatin about the streamwise direction. Fluids and Heat Transfer Report R78-1. ( Illinois Institute of Technology, Chicago 1978 )

    Google Scholar 

  • Wyngaard, J. C., Tennekes, H., Lumley, J. L., Margolis, D. P. (1968): Structure of turbulence in a curved mixing layer. Phys. Fluids 11, 1251

    Article  ADS  Google Scholar 

  • Zeman, O. (1975): The dynamics of entrainment in the plantary boundary layer: a study in turbulence modeling and parameterization. Ph. D. Thesis, The Pennsylvania State University, University Park

    Google Scholar 

  • Zeman, O., Lumley, J. L.: Turbulence and Diffusion Modeling in Buoyancy-Driven Mixed Layers, in Proceedings of Third Symposium on Atmospheric Turbulence, Diffusion Air Quality, Raleigh, NC (American Meterological Society, Boston, MA 1976 a) p. 38

    Google Scholar 

  • Zeman, O., Lumley, J. L. (1976 b): Modeling buoyancy-driven mixed layers. J. Atmos. Sci. 33, 1974

    Google Scholar 

  • Zeman, O., Lumley, J. L.: A Second Order Model for Buoyancy-Driven Mixed Layers, in Proceedings 9th ICHMT International Seminar Turbulent Buoyant Convection, (Hemisphere Washington, DC 1976 c) p. 65

    Google Scholar 

  • Zeman, O., Lumley, J. L.: Buoyancy Effects in Entraining Turbulent Boundary Layers: A Second Order Closure Study, in Turbulent Shear Flows 1, ed. by F. Durst, B. E. Launder, F. W. Schmidt, J. H. Whitelaw ( Springer, Berlin, Heidelberg, New York 1979 ) p. 295

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ettestad, D., Lumley, J.L. (1985). Parameterization of Turbulent Transport in Swirling Flows — I: Theoretical Considerations. In: Bradbury, L.J.S., Durst, F., Launder, B.E., Schmidt, F.W., Whitelaw, J.H. (eds) Turbulent Shear Flows 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-69996-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-69996-2_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-69998-6

  • Online ISBN: 978-3-642-69996-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics