Skip to main content

Diffusion Behind a Line Source in Grid Turbulence

  • Conference paper
Turbulent Shear Flows 4

Abstract

The flow considered is the thermal wake downstream of a fine heated wire in grid turbulence. The inability of generally-applicable turbulent diffusion models and second-order closures to calculate the mean and variance of the temperature is reviewed. Calculations based on the transport equation for the joint probability density function (pdf) of velocity and temperature show good agreement with measurements of mean temperature but not with those of the variance. Better calculations of the variance are obtained with a method based on the joint pdf conditional on the lateral velocity at the source.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Townsend, A. A. (1954): The diffusion behind a line source in homogeneous turbulence. Proc. Roy. Soc. A 224, 487

    Article  ADS  MATH  Google Scholar 

  2. Uberoi, M. S., Corrsin, S. (1953): Diffusion of heat from a line source in isotropic turbulence. NACA Report 1142

    Google Scholar 

  3. Warhaft, Z. (1984): Interference of line sources in grid turbulence. J. Fluid Mech. 44, 363

    Article  ADS  Google Scholar 

  4. Stapountzis, H., Sawford, B. L., Hunt, J. C. R., Britter, R. E. (1983): Structure of the temperature field downwind of a line source in grid turbulence. Submitted to J. Fluid Mech.

    Google Scholar 

  5. Taylor, G. I. (1921): Diffusion by continuous movements. Proc. Lond. Math. Soc. 20, 196

    Article  MATH  Google Scholar 

  6. Gifford, F. (1959): Statistical properties of a fluctuating plume dispersal model. Adv. Geophys. 6, 117

    Article  MathSciNet  ADS  Google Scholar 

  7. Sykes, R. I., Lewellen, W. S., Parker, S. F. (1984): A turbulent transport model for concentration fluctuations and fluxes. J. Fluid Mech. 139, 193

    Article  ADS  MATH  Google Scholar 

  8. Sawford, B. L., Hunt, J. C. R. (1983): Effects of turbulence structure, molecular diffusion and source size on fluctuations of concentration in homogeneous turbulence. Submitted to J. Fluid Mech.

    Google Scholar 

  9. Deardorff, J. W. (1978): Closure of second- and third-order rate equations for diffusion in homogeneous turbulence. Phys. Fluids 21, 525

    Article  ADS  MATH  Google Scholar 

  10. Libby, P. A., Scragg, C. A. (1973): Diffusion of heat from a line source downstream of a turbulence grid. AIAA J. 11, 562

    Article  ADS  Google Scholar 

  11. Fischer, H. B., List, E. J., Koh, R. C. Y., Imberger, J., Brooks, N. H.: Mixing in Inland and Coastal Waters, ( Academic, New York 1979 )

    Google Scholar 

  12. Pope, S. B. (1981): Transport equation for the joint probability density function of velocity and scalars in turbulent flow. Phys. Fluids 24, 588

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. Pope, S. B. (1985): PDF methods for turbulent reactive flows. To be published in Prog. Energy Combust. Sci.

    Google Scholar 

  14. Launder, B. E., Spalding, D. B.: Mathematical Models of Turbulence, ( Academic, New York 1972 )

    MATH  Google Scholar 

  15. Lumley, J. L. (1978): Computational modelling of turbulent flows. Adv. Appl. Mech. 18, 123

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. Pope, S. B. (1983): Consistent modelling of scalars in turbulent flows. Phys. Fluids 26, 404

    Article  ADS  MATH  Google Scholar 

  17. Warhaft, Z., Lumley, J. L. (1978): An experimental study of the decay of temperature fluctuations in grid generated turbulence. J. Fluid Mech. 99, 545

    Article  Google Scholar 

  18. Tavoularis, S., Corrsin, S. (1981): Experiments in nearly homogeneous turbulent shear flow with a uniform mean temperature gradient. Part I. J. Fluid Mech. 104, 311

    Article  ADS  Google Scholar 

  19. Monin, A. S., Yaglom, A. M.: Statistical Fluid Mechanics, Vol. 2, pp. 358–361 ( MIT Press, Cambridge 1975 )

    Google Scholar 

  20. Chandrasekhar, S.: In Noise and Stochastic Processes, ed. by N. Wax ( Dover, New York 1954 )

    Google Scholar 

  21. Uhlenbeck, G. E., Ornstein, L. S.: In Noise and Stochastic Processes, ed. by N. Wax ( Dover, New York 1954 )

    Google Scholar 

  22. Pope, S. B. (1983): A Lagrangian two-time probability density function equation for inhomogeneous turbulent flows. Phys. Fluids 26, 3448

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Anand, M.S., Pope, S.B. (1985). Diffusion Behind a Line Source in Grid Turbulence. In: Bradbury, L.J.S., Durst, F., Launder, B.E., Schmidt, F.W., Whitelaw, J.H. (eds) Turbulent Shear Flows 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-69996-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-69996-2_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-69998-6

  • Online ISBN: 978-3-642-69996-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics