Skip to main content

Three-Dimensional Vortex Dynamics near a Wall

  • Conference paper
Turbulent Shear Flows 4

Abstract

The three-dimensional deformation of an artificially generated line vortex near a flat wall is examined by means of flow visualization and quantitative conditioned sampling of a hot-wire anemometer. The vortex is observed to undergo a very rapid deformation from the rectilinear form to a hairpinlike shape. Similar shapes have been observed in the case of driven flows in laminar boundary layers and during the transition to turbulent flow. In the present case the vortices are driven by a rotor configuration of larger scale than the boundary layer thickness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arms, R. J., Hama, F. R. (1965): Localized induction concept on a curved vortex and motion of an elliptical vortex rings. Phys. Fluids 8, 553

    Article  ADS  Google Scholar 

  • Bethke, R. J., Viets, H. (1980): Data analysis to identify coherent flow structures. AIAA Paper No. 80–1561

    Google Scholar 

  • Bethke, R. J., Viets, H. (1983): Identification of convected flow structures by decomposition techniques. AIAA Paper No. 83 - 0048

    Google Scholar 

  • Coles, D., Barker, S. J. (1975): Some remarks on a synthetic turbulent boundary layer, in Turbulent Mixing in Non-reactive and Reactive Flows ( Plenum, New York 1975 )

    Google Scholar 

  • Doligalski, T. L., Smith, C. R., Walker, J. D. A. (1980): Production mechanism for turbulent boundary layer flows. Progr. Aeronaut. 72, 47

    ADS  Google Scholar 

  • Feigenbaum, M. J. (1983): Universal behavior in non-linear systems. Los Alamos Science, Summer, 4

    Google Scholar 

  • Francis, M. S., Keese, J. E., Lang, J. D., Sparks, G. W., Jr., Sisson, G. E. (1979): Aerodynamic characteristics of an unsteady separated flow. AIAA 17, 1332

    Article  Google Scholar 

  • Haritonidis, J. H., Kaplan, R. E., Wygnanski, I. (1980): Interaction of a turbulent spot with a turbulent boundary layer flows. Progr. Astro. Aero. 72, 47

    Google Scholar 

  • Hinze, J. O.: Turbulence, 2nd edition ( McGraw-Hill, New York 1975 )

    Google Scholar 

  • Karman, Th. Von (1911): Ãœber den Mechanismus des Widerstandes, den ein bewegter Körper in einer Flüssigkeit erfahrt. Göttinger Nachrichten, Mathematisch-Physikalische Klasse, 509

    Google Scholar 

  • Kadanoff, L. P. (1983): Roads to chaos. Physics Today 46

    Google Scholar 

  • Rankine, W. J. M.: Manual of Applied Mechanics, 1st edition ( Griffen, London 1858 )

    Google Scholar 

  • Saffman, P. G., Baker, G. R. (1978): The number of waves on unstable vortex rings. J. Fluid Mech. 84, 625

    Article  MathSciNet  ADS  Google Scholar 

  • Saffman, P. G., Baker, G. R. (1979): Vortex interactions. Fluid Mech. 11, 96

    ADS  Google Scholar 

  • Schlichting, H.: Boundary Layer Theory, 6th edition ( McGraw-Hill, New York 1968 )

    Google Scholar 

  • Schubauer, G. B., Skramstad, H. K. (1947): Laminar boundary layer oscillations and stability of laminar flow. J. Aerosp. Sci. 14, 69

    Google Scholar 

  • Tollmien, W. (1929): Ãœber die Entstehung der Turbulenz. 1. Mitteilung, Nachr. Ges. Wiss. Göttingen, Math. Phys. 21–44 (also NACA TM 609, 1931 )

    Google Scholar 

  • Viets, H. (1979): Coherent structures in time dependent flow. NATO/AG ARD CP-271

    Google Scholar 

  • Viets, H., Piatt, M. (1981 a): Induced unsteady flow in a dump combustor. AIAA Progr. Astro. Aero. 76, 611

    Google Scholar 

  • Viets, H., Piatt, M., Ball, M. (1981b): Boundary layer control by unsteady vortex generation. Wind Eng. Ind. Aero. 7, 135

    Article  Google Scholar 

  • Viets, H., Piatt, M., Ball, M. (1981): Forced vortices near wall. AIAA Paper 81 - 02565

    Google Scholar 

  • Viets, H., Piatt, M., Ball, M. (1979): Unsteady wing boundary layer energization. AIAA Paper 79–1631

    Google Scholar 

  • Viets, H., Sforza, P. M. (1972): Dynamics of bilaterally symmetric vortx rings. Phys. Fluids 15, 230

    Article  ADS  Google Scholar 

  • Widnall, S. E. (1975): The structure and dynamics of vortex filiments. Ann. Rev. Fluid Mech. 7, 141

    Article  ADS  Google Scholar 

  • Wortmann, F. X. (1977): The incompressible fluid motion downstream of two-dimensional Tollmien- Schlichting waves. AGARD/NATO CP-224 on Laminar-Turbulent Transition

    Google Scholar 

  • Zaroodny, S. J. (1973): Revised theory of vortex rings — a simplified review of the state of the art. U.S. Ballistic Research Laboratory, BRL MR 2305

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Viets, H., Bethke, R.J., Bougine, D. (1985). Three-Dimensional Vortex Dynamics near a Wall. In: Bradbury, L.J.S., Durst, F., Launder, B.E., Schmidt, F.W., Whitelaw, J.H. (eds) Turbulent Shear Flows 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-69996-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-69996-2_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-69998-6

  • Online ISBN: 978-3-642-69996-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics