Clinical Evidence for Functional Compartmentalization of the Cerebellum

  • J. Dichgans
  • H. C. Diener
Part of the Proceedings in Life Sciences book series (LIFE SCIENCES)


The unique structure of the cerebellum suggests a specific function of this part of the brain. Its nature, however, is poorly understood. Given the anatomical uniformity of the cerebellar cortex one may wonder whether it will be possible to localize functions of a principally different type within the cerebellar mantle. Even, if this were not the case, it is important to realize that there may exist functional localization as the result of the very specific afferent and efferent connections of a particular cerebellar area. Aside from these questions of a more basic significance, it is of clinical importance to know whether there are symptoms that allow for localization. This paper reports on the literature treating the subject and a number of our own studies on patients with postural ataxia and cerebellar disorders of eye movements. A major part of this review has already been published elsewhere (Dichgans 1984). So far the literature mainly contains studies with lesions in animals and rather few studies on patients with lesions that are well limited and precisely localized, e.g. by CT-scanning in recent years.


Smooth Pursuit Anterior Lobe Cerebellar Lesion Cerebellar Patient First Dorsal Interosseus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen GJ, Tsukahara N (1974) Cerebellar communication systems. Physiol Rev 54: 957–1006PubMedGoogle Scholar
  2. Amici R, Avancini G, Pacini L (1976) Cerebellar tumors. Monographs in neural sciences, vol IV. Karger, BaselGoogle Scholar
  3. Avanzini G, Girotti F, Crenna P, Negri S (1979) Alterations of ocular motility in cerebellar pathology. Arch Neurol 36: 274–280PubMedCrossRefGoogle Scholar
  4. Baloh RW, Konrad HR, Honrubia V (1975) Vestibulo-ocular function in patients with cerebellar atrophy. Neurology 25: 160–168PubMedGoogle Scholar
  5. Baloh RW, Jenkins HA, Honrubia V, Yee RD, Lau CGY (1979) Visual-vestibular interaction and cerebellar atrophy. Neurology 29: 116–119PubMedGoogle Scholar
  6. Baloh RW, Yee RD, Kimm J, Honrubia V (1981) Vestibulo-ocular reflex in patients with lesions involving the vestibulocerebellum. Exp Neurol 72: 141–152PubMedCrossRefGoogle Scholar
  7. Belenkii VYE, Gurfinkel VS, Paltsev YEI (1967) Elements of control of voluntary movements. Biophyzika 12: 135–141Google Scholar
  8. Bouisset S, Zattara M (1981) A sequence of postural movements precedes voluntary movement. Neurosci Lett 22: 263–270CrossRefGoogle Scholar
  9. Braitenberg V (1967) Is the cerebellar cortex a biological clock in the millisecond range? Prog Brain Res 25: 334–346PubMedCrossRefGoogle Scholar
  10. Brodai A (1981) Neurological anatomy. Oxford Univ Press, New York OxfordGoogle Scholar
  11. Brown JR (1959) Degenerative cerebellar ataxias. Neurology (Minneapolis) 9: 799–805Google Scholar
  12. Burde RM, Stroud MH, Roper-Hall G (1975) Ocular motor dysfunction in total and hemicerebellectomized monkeys. Br J Ophthalmol 59: 560–565PubMedCrossRefGoogle Scholar
  13. Carrea RME, Mettler FA (1955) Function of the primate brachium conjunctivum and related structures. J Comp Neurol 102: 151PubMedCrossRefGoogle Scholar
  14. Chambers BR, Gresty MA (1983) The relationship between disordered pursuit and vestibulo-ocular reflex suppression. J Neurol Neurosurg Physiat 46: 61–66CrossRefGoogle Scholar
  15. Cole M (1971) Dysprosody due to posterior fossa lesions. Trans Am Neurol Assoc 96: 151–154PubMedGoogle Scholar
  16. Conrad B, Brooks V (1975) Cerebelläre Bewegungsstörungen im Tierversuch. Vergleich rascher Alternativbewegungen and langsamer Zielbewegungen während reversibler Dentatusausschaltung. J Neurol 209: 165–179Google Scholar
  17. Cordo PJ, Nashner LM (1982) Properties of postural adjustments associated with rapid arm movements. J Neurophysiol 47: 287–302PubMedGoogle Scholar
  18. Dichgans J (1984) Clinical symptoms of cerebellar dysfunction and their topodiagnostical significance. Human Neurobiol 2: 269–279Google Scholar
  19. Dichgans J, Jung R (1975) Oculomotor abnormalities due to cerebellar lesions. In: Lennerstrand G, Bach-y-Rita P (eds) Basic mechanisms of ocular motility and their clinical implications. Perga-mon Press, Oxford New York, pp 281–298Google Scholar
  20. Dichgans J, Mauritz KH, Allum JHJ, Brandt TH (1976) Postural sway in normals and ataxic patients. Agressologie 17C: 15–24PubMedGoogle Scholar
  21. Dichgans J, Reutern von GM, Römmelt U (1978) Impaired suppression of vestibular nystagmus by fixation in cerebellar and noncerebellar patients. Arch Psychiat Nervenkr 226: 183–193PubMedCrossRefGoogle Scholar
  22. Dichgans J, Diener HC, Mauritz KH (1983) What distinguishes the different kinds of postural ataxia in patients with cerebellar diseases. Adv Otorhinolaryngol 30: 285–287PubMedGoogle Scholar
  23. Diener HC, Bootz F, Dichgans J, Bruzek W (1983) Variability of postural “reflexes” in humans. Exp Brain Res 52: 423–428PubMedCrossRefGoogle Scholar
  24. Diener HC, Dichgans J, Bacher M, Hülser J, Liebich H (1983) Mechanisms of postural ataxia after intake of alcohol. Z Rechtsmed, 90: 159–165PubMedCrossRefGoogle Scholar
  25. Diener HC, Dichgans J, Bootz F, Bacher M (1984) Early stabilization of human posture after a sudden disturbance: Influence of rate and amplitude of displacement. Exp Brain Res 56: 126–134Google Scholar
  26. Diener HC, Dichgans J, Bacher B, Gompf B (1984) Quantification of postural sway in normals and patients with cerebellar diseases. Electroencephalogr Clin Neurophysiol 57: 134–142PubMedCrossRefGoogle Scholar
  27. Diener HC, Dichgans J, Bacher B, Guschlbauer P (1984) Characteristic alterations of long loop “reflexes” in patients with Friedreich’s disease and late atrophy of the cerebellar anterior lobe. J Neurol Neurosurg Psychiat 47: 679–685PubMedCrossRefGoogle Scholar
  28. Diener HC, Dichgans J, Bacher B, Guschlbauer P (1984) Characteristic alterations of long loop “reflexes” in patients with Friedreich’s disease and late atrophy of the cerebellar anterior lobe. J Neurol Neurosurg Psychiat 47: 679–685PubMedCrossRefGoogle Scholar
  29. Diener HC, Dichgans J, Hülser PJ, Buettner UW, Bacher M, Guschlbauer B (1984) The significance of long loop “reflexes” for the diagnosis of multiple sclerosis. Electroenceph Clin Neurophysiol 57: 336–342PubMedCrossRefGoogle Scholar
  30. Dow RS, Moruzzi G (1958) The physiology and pathology of the cerebellum. Univ of Minnesota Press, MinneapolisGoogle Scholar
  31. Eccles JC (1977) Cerebellar function in the control of movement. In: Rose F (ed) Physiological aspects of clinical neurology. Blackwell, Oxford, pp 157–178Google Scholar
  32. Eckmiller R, Westheimer G (1983) Compensation of oculomotor deficits in monkeys with neonatal cerebellar ablations. Exp Brain Res 49: 315–326PubMedCrossRefGoogle Scholar
  33. Evarts EV, Thach WTS (1969) Motor mechanisms of the CNS: cerebro-cerebellar interrelations. Ann Rev Physiol 31: 451–498CrossRefGoogle Scholar
  34. Friedemann HH, Noth J, Diener HC, Bacher M (1984) Long latency EMG responses in hand and leg muscles. I. Cerebellar disorders. J Neurol Neurosurg Psychiat (submitted)Google Scholar
  35. Fuchs AF, Kornhuber HH (1969) Extraocular muscle afferents to the cerebellum of the cat. J Physiol 200: 713–7 22Google Scholar
  36. Gilman S (1969) The mechanism of cerebellar hypotonia: an experimental study in the monkey. Brain 92: 621–638PubMedCrossRefGoogle Scholar
  37. Gilman S, Bloedel JR, Lechtenberg R (1981) Disorders of the cerebellum. Davis, PhiladelphiaGoogle Scholar
  38. Goldberger ME, Growdon JH (1971) Tremor at rest following cerebellar lesions in monkeys: effect of L-dopa administration. Brain Res 27: 183–187PubMedCrossRefGoogle Scholar
  39. Gonshor A, Melvill-Jones G (1971) Plasticity in the adult human vestibulo-ocular reflex arc. Proc Can Fed Biol Soc 14: 11Google Scholar
  40. Hallett M, Shahani BT, Young RR (1975) EMG analysis of patients with cerebellar deficits. J Neurol Neurosurg Psychiat 38: 1163–1169PubMedCrossRefGoogle Scholar
  41. Halmagyi GM, Gresty MA (1979) Clinical signs of visual-vestibular interaction. J Neurol Neurosurg Psychiat 42: 931–939CrossRefGoogle Scholar
  42. Holmes G (1917) The symptoms of acute cerebellar injuries due to gunshot injuries. Brain 40: 461–535CrossRefGoogle Scholar
  43. Holmes G (1939) The cerebellum of man. (The Hughlings Jackson memorial lecture). Brain 62: 1–30CrossRefGoogle Scholar
  44. Hood JD (1981) Further observations on the phenomenon of rebound nystagmus. In: Cohen B (ed) Vestibular and oculomotor physiology. Ann NY Acad Sci 374: 532–539Google Scholar
  45. Hood JD, Kayan A, Leech J (1973) Rebound nystagmus. Brain 96: 507–526PubMedCrossRefGoogle Scholar
  46. Koeppen AH, Baron KD, Deutinger MP (1980) Olivary hypertrophy in man. In: Courville J et al. (eds) The inferior olivary nucleus: anatomy and physiology. Raven Press, New York, pp 309–314Google Scholar
  47. Lechtenberg R, Gilman S (1978) Speech disorders in cerebellar disease. Ann Neurol 3: 285–290PubMedCrossRefGoogle Scholar
  48. Lee RG, Tatton WG (1975) Motor responses to sudden limb displacements in primates with specific CNS lesions and in human patients with motor system disorders. Can J Neurol Sci 2: 285–293PubMedGoogle Scholar
  49. Lisberger SG, Fuchs AF (1978) Role of primate flocculus during rapid behavioural modification of vestibulo-ocular reflex. I. Purkinje cell activity during visually guided horizontal smooth pursuit eye movements and passive head rotation. J Neurophysiol4l: 733–763Google Scholar
  50. Llinas R, Volkind RA (1973) The olivo-cerebellar system: Functional properties as revealed by harmaline-induced tremor. Exp Brain Res 18: 69–87Google Scholar
  51. MacKay WA, Murphy JT (1979) Cerebellar influence on proprioceptive control loops. In: Massion J, Sasaki K (eds) Cerebro-cerebellar interactions. Elsevier, Amsterdam, pp 141–162Google Scholar
  52. Marsden CD, Merton PA, Morton HB, Hallett M, Adam J, Rushton DM (1977) Disorders of movement in cerebellar disease in man. In: Rose F (ed) Physiological aspects of clinical neurology. Blackwell, Oxford, pp 179–199Google Scholar
  53. Marsden CD, Merton PA, Morton HB, Adam J (1978) The effect of lesions of the central nervous system on long-latency stretch reflexes in the human thumb. In: Desmedt JE (ed) Cerebral motor control in man: Long loop mechanisms. Karger, Basel, pp 334–341Google Scholar
  54. Mauritz KH (1979) Standataxie bei Kleinhirnläsionen. Untersuchungen zur Differentialdiagnostik and Pathophysiologie gestörter Haltungsregulation. Habilitationsschr, Med Fak, Univ FreiburgGoogle Scholar
  55. Mauritz KH, Dichgans J, Hufschmidt A (1979) Quantitative analysis of stance in late cortical cere bellar atrophy of the anterior lobe and other forms of cerebellar ataxia. Brain 102: 461–482PubMedCrossRefGoogle Scholar
  56. Mauritz KH, Schmitt C, Dichgans J (1981) Delayed and enhanced long latency reflexes as the possible cause of postural tremor in late cerebellar atrophy. Brain 104: 97–116PubMedCrossRefGoogle Scholar
  57. Melvill-Jones G, Watt DGD (1971) Observations on the control of stepping and hopping movement in man. J Physiol 219: 709–727Google Scholar
  58. Meyer-Lohmann J, Hore J, Brooks VB (1977) Cerebellar participation in generation of prompt arm movements. J Neurophysiol 40: 1038–1050PubMedGoogle Scholar
  59. Miles FA (1982) Adaptive gain control in the vestibulo-ocular reflex. In: Lennerstrand G, Zee DS, Keller EL (eds) Functional basis of ocular motility disorders, vol 37. Wenner Gren Symp Perga-mon Press, Oxford, pp 325–337Google Scholar
  60. Miles FA, Fuller JH, Braitman DJ, Dow BM (1980) Long-term adaptive changes in primate vestibulo-ocular reflex. III. Electrophysiological observations in flocculus of normal monkeys. J Neurophysiol 43: 1437–1476Google Scholar
  61. Nashner LM, Grimm KJ (1978) Analysis of multiloop dyscontrols in standing cerebellar patients. In: Desmed JE (ed) Cerebral motor control in man: Long loop mechanims. Karger, Basel Progr Clin Neurophysiol, vol IV, pp 300–319Google Scholar
  62. Neilson PD, Lance JW (1978) Reflex transmission characteristics during voluntary activity in normal man and patients with movement disorders. In: Desmedt JE (ed) Cerebral motor control in man: Long loop mechanisms, Karger, Basel (Progr Clin Neurophysiol, vol IV, pp 263–299 )Google Scholar
  63. Noth J, Friedemann HH, Podol HK, Lange HW (1983) Absence of long latency reflexes to imposed finger displacements in patients with Huntington’s disease. Neurosci Letters 35: 97–100CrossRefGoogle Scholar
  64. Optican LM, Robinson DA (1980) Cerebellar dependent adaptive control of the primate saccadic system. J Neurophysiol 44: 1058–1076PubMedGoogle Scholar
  65. Paltsev YJ, Elner AM (1967) Preparatory and compensatory period during voluntary movement in patients with involvement of the brain of different localization. Biophys J 12: 142–147Google Scholar
  66. Pollock LJ, Davis L (1930) Studies in decerebration VI. The effect of deafferentation upon decere- brate rigidity. Am J Physiol 98: 47Google Scholar
  67. Reutern von GM, Dichgans J (1977) Augenbewegungsstörungen als cerebelläre Symptome bei Kleinhirnbrückenwinkeltumoren. Arch Psychiat Nervenkr 223: 117–130PubMedCrossRefGoogle Scholar
  68. Ritchie L (1976) Effects of cerebellar lesions on saccadic eye movements. J Neurophysiol 39: 1246–1252PubMedGoogle Scholar
  69. Robinson DA (1976) Adaptive gain control of vestibuloocular reflex by the cerebellum. J Neurophysiol 39: 954–969PubMedGoogle Scholar
  70. Robinson DA (1982) A model of cancellation of the vestibulo-ocular reflex. In: Lennerstrand G, Zee DS, Keller EL (eds) Functional basis of ocular motility disorders, vol. 37. Wenner Gren Symp, Pergamon Press, Oxford New York, pp 5–13Google Scholar
  71. Rondot P, Bathien N, Toma S (1979) Physiopathology of cerebellar movement. In: Massion J, Sa saki K (eds) Cerebro-cerebellar interactions. Elsevier, Amsterdam New York, pp 203–230Google Scholar
  72. Rondot P, Bathien N, Toma S (1979) Physiopathology of cerebellar movement. In: Massion J, Sa saki K (eds) Cerebro-cerebellar interactions. Elsevier, Amsterdam New York, pp 203–230Google Scholar
  73. Silfverskiöld BP (1969) Romberg’s test in the cerebellar syndrome occurring in chronic alcoholism. Acta Neurol Scand 45: 292–302PubMedCrossRefGoogle Scholar
  74. Suzuki DA, Noda H, Kase M (1981) Visual and pursuit eye movement-related activity in posterior vermis of monkey cerebellum. J Neurophysiol 46: 1120–1139PubMedGoogle Scholar
  75. Takemori S, Cohen B (1974) Loss of visual suppression of vestibular nystagmus after flocculus lesions. Brain 72: 213–224CrossRefGoogle Scholar
  76. Terzuolo CA, Viviani P (1974) Patterns of motion and EMG activities during some simple motor tasks in normal subjects and cerebellar patients. In: Cooper IS, Riklan M, Snider RS (eds) The cerebellum, epilepsy and behavior. Plenum Press, New York, pp 173–215CrossRefGoogle Scholar
  77. Traub MM, Rothwell JC, Marsden CD (1980) Anticipatory postural reflexes in Parkinson’s disease and other akinetic-rigid syndromes and cerebellar ataxia. Brain 103: 393412Google Scholar
  78. Victor M, Adams RD, Mancall EL (1959) A restricted form of cerebellar cortical degeneration occurring in alcoholic patients. Arch Neurol 1: 579–688CrossRefGoogle Scholar
  79. Vilis T, Hore J (1977) Effects of changes in mechanical state of limb on cerebellar intention tremor. J Neurophysiol 40: 1214–1224PubMedGoogle Scholar
  80. Vilis T, Hore J (1980) Central neural mechanisms contributing to cerebellar tremor produced by limb perturbations. J Neurophysiol 43: 279–291PubMedGoogle Scholar
  81. Vilis T, Hore J (1981) Characteristics of saccadic dysmetria in monkeys during reversible lesions of medial cerebellar nuclei. J Neurophysiol 46: 828–838PubMedGoogle Scholar
  82. Vilis T, Snow R, Hore J (1983) Cerebellar saccadic dysmetria is not equal in the two eyes. Exp Brain Res 51: 343–350CrossRefGoogle Scholar
  83. Waespe W, Cohen B, Raphan T (1983) Role of the flocculus and paraflocculus in optokinetic nys tagmus and visual-vestibular interactions: effects of lesions. Exp Brain Res 50: 9–33PubMedCrossRefGoogle Scholar
  84. Weisenburg TH (1927) Cerebellar localization and its symptomatology. Brain 50: 357CrossRefGoogle Scholar
  85. Westheimer G, Blair SM (1973) Oculomotor defects in cerebellectomized monkeys. Invest Opthal mol Vis Sci 12: 618–621Google Scholar
  86. Westheimer G, Blair SM (1974) Functional organization of primate oculomotor system revealed by cerebellectomy. Exp Brain Res 21: 463–472PubMedCrossRefGoogle Scholar
  87. Wiesendanger M, Miles TS (1982) Ascending pathway of low-threshold muscle afferents to the cerebral cortex and its possible role in motor control. Physiol Rev 62: 1234–1270PubMedGoogle Scholar
  88. Woollacott MH (1983) Effects of ethanol on postural adjustments in humans. Exp Neurology 80: 55–68CrossRefGoogle Scholar
  89. Yagi T, Shimizu M, Sekine S, Kamio T, Suzuki J-I (1981) A new neurotological test for detecting cerebellar dysfunction. In: Cohen B (ed) Vestibular and oculomotor physiology. Ann NY Acad Sci 374: 526–531Google Scholar
  90. Zee DS (1982) Ocular motor control: the cerebellum. In: Lessel S, Dalen van JTW (eds) Neuroopthalmology, vol II. Excerpta Medica, Amsterdam Oxford, Princeton, pp 136Google Scholar
  91. Zee DS, Friendlich AR, Robinson DA (1974) Mechanisms of downbeat nystagmus. Arch Neurol 30: 227–237PubMedCrossRefGoogle Scholar
  92. Zee DS, Yee RD, Cogan DG, Robinson DA, Engel WK (1976) Oculomotor abnormalities in hereditary cerebellar ataxia. Brain 99: 207–234PubMedCrossRefGoogle Scholar
  93. Zee DS, Yamazaki A, Butler P, Gücer G (1981) Effect of ablation of flocculus and paraflocculus on eye movement in primate. J Neurophysiol 46: 878–899PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1984

Authors and Affiliations

  • J. Dichgans
  • H. C. Diener
    • 1
  1. 1.Department of NeurologyUniversity of TübingenGermany

Personalised recommendations