Skip to main content

The Primate Flocculus in Visual-vestibular Interactions: Conceptual, Neurophysiological, and Anatomical Problems

  • Conference paper
Cerebellar Functions

Part of the book series: Proceedings in Life Sciences ((LIFE SCIENCES))

Abstract

Unblurred vision is mandatory for the orderly processing of visual information during eye and head movements; image slip on the retina of only a few degrees per second diminishes visual acuity (Westheimer and McKee, 1975). Several mechanisms have developed to generate slow eye movements which are aimed at preventing blurring of images on the retina during movements. Head movements induce in all mammals slow eye movements, i.e. compensatory eye movements, into the direction opposite to the head movement via the vestibulo-ocular reflex arc (VOR). Movements of large parts of the visual surround or of single objects induce slow eye movements into the direction of the moving pattern. Continuous rotation of the visual surround induces in foveate and afoveate animals a typical repetitive sequence of eye movements, optokinetic nystagmus (OKN). In foveate animals movement of a single target object can elicit smooth pursuit eye movements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alley K (1977) Anatomical basis for the interaction between cerebellar flocculus and brainstem. In: Baker R, Berthoz A (eds) Control of gaze by brainstem neurons. Dev Neurosci 1: 109–117

    Google Scholar 

  • Allum JHJ, Graf W, Dichgans J, Schmidt CL (1976) Visual-vestibular interaction in the vestibular nuclei of the goldfish. Exp Brain Res 26: 463–485

    Article  PubMed  CAS  Google Scholar 

  • Angaut P, Brodai A (1967) The projection of the “vestibulo-cerebellum” onto the vestibular nuclei in the cat. Arch Ital Biol 105: 441–479

    PubMed  CAS  Google Scholar 

  • Barmack NH (1979) Immediate and sustained influences of visual olivocerebellar activity on eye movement. In: Talbott RE, Humphrey DR (eds) Posture and movement. Raven Press, New York, pp 123–168

    Google Scholar 

  • Collewijn H (1981) The optokinetic system: In: Zuber BL (ed) Models of oculomotor behavior and control. CRC Press, West Plam Beach, Fla, pp 111–137

    Google Scholar 

  • Batini C, Ito M, Kado RT, Jastreboff PJ, Misashita Y (1979) Interaction between the horizontal vestibulo-ocular reflex and optokinetic response in rabbits. Exp Brain Res 37: 1–15

    Article  PubMed  CAS  Google Scholar 

  • Blanks RHI, Precht W (1978) Response properties of vestibular afferents in alert cats during opto-kinetic and vestibular stimulation. Neurosci Lett 10: 225–229

    Article  PubMed  CAS  Google Scholar 

  • Blanks RHI, Precht W (1983) Responses of units in the rat cerebellar flocculus during optokinetic and vestibular stimulation. Exp Brain Res 53: 1–15

    Article  PubMed  CAS  Google Scholar 

  • Brodai A, Hoivik B (1964) Site and mode of termination of primary vestibulocerebellar fibers in the cat. Arch Ital Biol 101: 1–21

    Google Scholar 

  • Buettner UW, Büttner U (1979) Vestibular nuclei activity in the alert monkey during suppression of vestibular and optokinetic nystagmus. Exp Brain Res 37: 581–593

    Article  PubMed  CAS  Google Scholar 

  • Büttner U, Waespe W (1981) Vestibular nerve activity in the alert monkey during vestibular and optokinetic nystagmus. Exp Brain Res 41: 310–315

    Article  PubMed  Google Scholar 

  • Büttner U, Waespe W (1984) Purkinje cell activity in the primate flocculus during optokinetic stim-ulation, smooth pursuit eye movements and VOR-suppression. Exp Brain Res 55: 97–104

    Article  PubMed  Google Scholar 

  • Büttner U, Boyle R, Schreiter U (1983) Vestibular nuclei activity in the alert monkey during con-stant velocity and sinusoidal optokinetic stimulation. Soc Neurosci Abstr 9: 315

    Google Scholar 

  • Carpenter MB, Stein BM, Peter P (1972) Primary vestibulo-cerebellar fibers in the monkey: distribution of fibers arising from distinctive cell groups of the vestibular ganglia. Am J Anat 135: 221–250

    Article  PubMed  CAS  Google Scholar 

  • Cazin L, Precht W, Lannou J (1980) Pathways mediating optokinetic responses of vestibular nucleus neurons in the rat. Pflüger’s Arch 384: 19–29

    Article  PubMed  CAS  Google Scholar 

  • Cohen B, Uemura T, Takemori S (1973) Effects of labyrinthectomy on optokinetic nystagmus (OKN) and optokinetic after-nystagmus ( OKAN ). Equil Res 3: 88–93

    Google Scholar 

  • Cohen B, Matsuo V, Raphan T (1977) Quantitative analysis of the velocity characteristics of optokinetic nystagmus and optokinetic after-nystagmus. J Physiol 270: 321–344

    PubMed  CAS  Google Scholar 

  • Cohen B, Suzuki J, Raphan T, Matsuo V, deJong V (1982) Selective labyrinthine lesions and nystagmus induced by rotation about off-vertical axis. In: Lennerstrand G, Keller E, Zee DS (eds) Functional basis of ocular motility disorders. Pergamon Press, Oxford New York, pp 337–346

    Google Scholar 

  • Collewijn H (1976) Impairment of optokinetic (after)nystagmus by labyrinthectomy in the rabbit. Exp Neurol 52: 146–156

    Article  PubMed  CAS  Google Scholar 

  • Collewijn H (1981) The optokinetic system: In: Zuber BL (ed) Models of oculomotor behavior and control. CRC Press, West Plam Beach, Fla, pp 111–137

    Google Scholar 

  • Dow RS (1938) Efferent connections of the flocculo-nodular lobe in macacca mulatta. J Comp Neurol 68: 297–305

    Article  Google Scholar 

  • Dubois MFW, Collewijn H (1979) The optokinetic reactions of the rabbit: relation to the visual streak. Vision Res 19: 9–17

    Article  PubMed  CAS  Google Scholar 

  • Duensing F, Schaefer KP (1958) Die Aktivität einzelner Neurone im Bereich der Vestibulariskerne bei Horizontalbeschleunigung unter besonderer Berücksichtigung des vestibulären Nystagmus. Arch Psychiat Nervenkr 198: 225–252

    Article  PubMed  CAS  Google Scholar 

  • Fuchs AF (1967) Saccadic and smooth pursuit eye movements in the monkey. J Physiol 191: 609–631

    PubMed  CAS  Google Scholar 

  • Fukuda J, Highstein SM, Ito M (1972) Cerebellar inhibitory control of the vestibulo-ocular reflex investigated in rabbit 3rd nucleus. Exp Brain Res 14: 511–526

    Article  PubMed  CAS  Google Scholar 

  • Ghelarducci B, Ito M, Yagi N (1975) Impulse discharges from flocculus Purkinje cells of alert rabbits during visual stimulation combined with horizontal head rotation. Brain Res 87: 66–72

    Article  PubMed  CAS  Google Scholar 

  • Goldberg JM, Fernandez C (1981) Physiological mechanisms of the nystagmus produced by rota-tions about an earth-horizontal axis. Ann NY Acad Sci 374: 40–43

    Article  PubMed  CAS  Google Scholar 

  • Gonshor A, Melvill Jones G (1976) Extreme vestibulo-ocular adaptation induced by prolonged optical reversal of vision. J Physiol 256: 381–414

    PubMed  Google Scholar 

  • Gutman J, Zelig S, Bergmann F (1964) Optokinetic nystagmus in the labyrinthectomized rabbit. Confin Neurol 24: 158–162

    PubMed  CAS  Google Scholar 

  • Haines DE (1977) Cerebellar corticonuclear and corticovestibular fibers of the flocculonodular lobe in a prosimian primate (Galago senegalensis). J Comp Neurol 174: 607–630

    Article  PubMed  CAS  Google Scholar 

  • Henn V, Young L, Finley C (1974) Vestibular nucleus units in alert monkeys are also influenced by moving visual fields. Brain Res 71: 144–149

    Article  PubMed  CAS  Google Scholar 

  • Henn V, Cohen B, Young LR (1980) Visual-vestibular interaction in motion perception and the generation of nystagmus. Neurosci Res Progr Bull 18: 459–651

    Google Scholar 

  • Holmes G (1917) The symptoms of acute cerebellar injuries due to gunshot injuries. Brain 40: 461–535

    Article  Google Scholar 

  • Ito M (1972) Neural design of the cerebellar motor control system. Brain Res 40: 81–84

    Article  PubMed  CAS  Google Scholar 

  • Ito M (1976) Cerebellar learning control of vestibulo-ocular mechanisms. In: Desirayu T (ed) Mech-anisms in transmission of signals for conscious behavior. Elsevier, Amsterdam New York, pp 1–22

    Google Scholar 

  • Ito M (1982) Cerebellar control of the vestibuloocular reflex, around the flocculus hypothesis. Annu Rev Neurosci 5: 275–296

    Article  PubMed  CAS  Google Scholar 

  • Ito M, Jastreboff PJ, Miyashita Y (1982) Specific effects of unilateral lesions in the flocculus upon eye movements in albino rabbits. Exp Brain Res 45: 233–242

    Article  PubMed  CAS  Google Scholar 

  • Keller EL (1976) Behavior of horizontal semicircular canal afferents in alert monkey during vestibular and optokinetic stimulation. Exp Brain Res 24: 459–471

    Article  PubMed  CAS  Google Scholar 

  • Keller EL, Daniels PD (1975) Oculomotor related interaction of vestibular and visual stimulation in vestibular nuclei cells in alert monkeys. Exp Neurol 46: 187–198

    Article  PubMed  CAS  Google Scholar 

  • Keller EL, Kamath BY (1975) Characteristics of head rotation and eye movement-related neurons in alert monkey vestibular nucleus. Brain Res 100: 182–187

    Article  PubMed  CAS  Google Scholar 

  • Keller EL, Precht W (1979) Visual-vestibular responses in vestibular nuclear neurons in intact and cerebellectomized, alert cat. Neuroscience 4: 1599–1613

    Article  PubMed  CAS  Google Scholar 

  • King WM, Lisberger SG, Fuchs AF (1976) Responses of fibers in medial longitudinal fasciculus ( MLF) of alert monkeys during horizontal and vertical conjugate eye movements evoked by vestibular or visual stimuli. J Neurophysiol 39: 1135–1149

    PubMed  CAS  Google Scholar 

  • Koerner F, Schiller PH (1972) The optokinetic response under open and closed loop conditions in the monkey. Exp Brain Res 14: 318–330

    Article  PubMed  CAS  Google Scholar 

  • Kommerell G, Klein U (1971) Über die visuelle Regelung der Okulomotorik: die optomotorische Wirkung exzentrischer Nachbilder. Vision Res 11: 905–920

    Article  PubMed  CAS  Google Scholar 

  • Korte GE, Mugnaini E (1979) The cerebellar projection of the vestibular nerve in the cat. J Comp Neurol 184: 265–278

    Article  PubMed  CAS  Google Scholar 

  • Holmes G (1917) The symptoms of acute cerebellar injuries due to gunshot injuries. Brain 40: 461–535

    Article  Google Scholar 

  • Lisberger SG, Fuchs AF (1978a) Role of primate flocculus during rapid behavioral modification of vestibulo-ocular reflex. I. Purkinje cell activity during visually guided horizontal smooth-pursuit eye movements and passive head rotation. J Neurophysiol 41: 733–763

    PubMed  CAS  Google Scholar 

  • Lisberger SG, Fuchs AF (1978b) Role of primate flocculus duringrapid behavioral modification of vestibulo-ocular reflex. II. Mossy fiber firing patterns during horizontal head rotation and eye movement. J Neurophysiol 41: 764–777

    PubMed  CAS  Google Scholar 

  • Lisberger SG, Miles FA, Optican LM, Eighmy B (1981) Optokinetic response in monkey: underlying mechanisms and their sensitivity to long-term adaptive changes in vestibuloocular reflex. J Neurophysiol 45: 869–890

    PubMed  CAS  Google Scholar 

  • Lorente de Nc R (1933) Vestibulo-ocular reflex arc. Arch Neurol Psychiat 30: 245–291

    Google Scholar 

  • Maekawa K, Takeda T (1976) Electrophysiological identification of the climbing and mossy fiber pathways from the rabbit’s retina to the contralateral cerebellar flocculus. Brain Res 109: 169–174

    Article  PubMed  CAS  Google Scholar 

  • Miles FA, Lisberger SG (1981) Plasticity in the vestibulo-ocular reflex: a new hypothesis. Annu Rev Neurosci 4: 273–299

    Article  PubMed  CAS  Google Scholar 

  • Miles FA, Fuller JH, Braitman DJ, Dow BM (1980) Long term adaptive changes in primate vestibulo-ocular reflexes. III. Electrophysiological observations in flocculus of adapted monkeys. J Neurophysiol 43: 1437–1476

    PubMed  CAS  Google Scholar 

  • Mitsacos A, Reisine H, Highstein SM (1983) The superior vestibular nucleus: An intracellular HRP study in the cat. II. Non-vestibular-oculor neurons. J comp Neurol: 215, 92–107

    Article  PubMed  CAS  Google Scholar 

  • King WM, Lisberger SG, Fuchs AF (1976) Responses of fibers in medial longitudinal fasciculus ( MLF) of alert monkeys during horizontal and vertical conjugate eye movements evoked by vestibular or visual stimuli. J Neurophysiol 39: 1135–1149

    PubMed  CAS  Google Scholar 

  • Miyashita Y, Nagao S (1981) Signal contents of Purkinje cell responses in rabbit flocculus to optokinetic stimuli. J Jpn Physiol Soc 43: 317

    Google Scholar 

  • Mowrer OH (1937) The influence of vision during bodily rotation upon the duration of post-rotational vestibular nystagmus. Acta Otolaryngol 25: 351–364

    Article  Google Scholar 

  • Nagao S (1983) Effects of vestibulocerebellar lesions upon dynamic characteristics and adaptation of vestibulo-ocular and optokinetic responses in pigmented rabbits. Exp Brain Res 53: 36–46

    Article  PubMed  CAS  Google Scholar 

  • Neverov VP, Gterc J, Bures J (1980) Electrophysiological correlates of the reversed postoptokinetic nystagmus in the rabbit: Activity of vestibular and floccular neurons. Brain Res 189: 355–367

    Article  PubMed  CAS  Google Scholar 

  • Waespe W, Henn V (1977a) Neuronal activity in the vestibular nuclei of the alert monkey during vestibular and optokinetic stimulation. Exp Brain Res 27: 523–538

    Article  PubMed  CAS  Google Scholar 

  • Noda H, Suzuki DA (1978) The role of the flocculus of the monkey in saccadic eye movements. J Physiol 294: 317–334

    Google Scholar 

  • Noda H, Warabi T (1982) Eye position signals in the flocculus of the monkey during smooth-pursuit eye movements. J Physiol 324: 187–202

    PubMed  CAS  Google Scholar 

  • Noda H, Asoh R, Shibagaki M (1977) Floccular unit activity associated with eye movements and fixation. In: Baker R, Berthoz A (eds) Control of gaze by brain stem neurons. Elsevier, Amsterdam, pp 371–380

    Google Scholar 

  • Raphan T, Cohen B (1981) The role of integration in oculomotor control. In: Zuber B (ed) Models of oculomotor behavior and control, CRC Press, West Palm Beach, Fla, pp 91–109

    Google Scholar 

  • Raphan T, Matsuo V, Cohen B (1979) Velocity storage in the vestibulo-ocular reflex arc ( VOR ). Exp Brain Res 35: 229–248

    Google Scholar 

  • Rashbass C (1961) The relationship between saccadic and smooth tracking eye movements. J Physiol 159: 326

    PubMed  CAS  Google Scholar 

  • Robinson DA (1965) The mechanics of human smooth pursuit eye movement. J Physiol 180: 569–591

    PubMed  CAS  Google Scholar 

  • Robinson DA (1976) Adaptive gain control of vestibuloocular reflex by the cerebellum. J Neurophysiol 39: 954–969

    PubMed  CAS  Google Scholar 

  • Robinson DA (1981) Control of eye movements. In: Brooks VB (ed) Handbook of physiology, sect 1: the nervous system, vol II. Am Physiol Soc (Bethesda), pp 1275–1320

    Google Scholar 

  • Sato Y, Kawasaki T, Ikarashi K (1983) Zonal organization of the floccular Purkinje cells projecting to the vestibular nucleus in cats. Brain Res 232: 1–15

    Article  Google Scholar 

  • Takemori S, Cohen B (1974) Loss of suppression of vestibular nystagmus after flocculus lesion. Brain Res 72: 213–224

    Article  PubMed  CAS  Google Scholar 

  • Waespe W, Cohen B (1983) Effects of flocculectomy on unit activity in the vestibular nuclei during visual-vestibular interactions. Exp Brain Res 51: 23–35

    Article  PubMed  CAS  Google Scholar 

  • Waespe W, Henn V (1977a) Neuronal activity in the vestibular nuclei of the alert monkey during vestibular and optokinetic stimulation. Exp Brain Res 27: 523–538

    Article  PubMed  CAS  Google Scholar 

  • Waespe W, Henn V (1977b) Vestibular nuclei activity during optokinetic after-nystagmus ( OKAN) in the alert monkey. Exp Brain Res 30: 323–330

    Article  CAS  Google Scholar 

  • Waespe W, Henn V (1978) Conflicting visual-vestibular stimulation and vestibular nucleus activity in alert monkeys. Exp Brain Res 33: 203–211

    Article  PubMed  CAS  Google Scholar 

  • Waespe W, Henn V (1979a) The velocity response of vestibular nucleus neurons during vestibular, visual, and combined angular acceleration. Exp Brain Res 37: 337–347

    Article  PubMed  CAS  Google Scholar 

  • Noda H, Warabi T (1982) Eye position signals in the flocculus of the monkey during smooth-pursuit eye movements. J Physiol 324: 187–202

    PubMed  CAS  Google Scholar 

  • Waespe W, Henn V (1981) Visual-vestibular interaction in the flocculus of the alert monkey. II. Purkinje cell activity. Exp Brain Res 43: 439–360

    Google Scholar 

  • Waespe W, Henn V, Isovilta V (1980) Nystagmus slow-phase velocity during vestibular, optokinetic, and combined stimulation in the monkey. Arch Psychiat Nervenkr 228: 275–286

    Article  PubMed  CAS  Google Scholar 

  • Waespe W, Buettner U, Henn V (1981) Visual-vestibular interaction in the flocculus of the alert monkey. I. Input activity. Exp Brain Res 43: 337–348

    Article  PubMed  CAS  Google Scholar 

  • Waespe W, Cohen B, Raphan T (1983) Role of the flocculus and paraflocculus in optokinetic nystagmus and visual-vestibular interactions: effects of lesions. Exp Brain Res 50: 9–33

    Article  PubMed  CAS  Google Scholar 

  • Waespe W, Rudinger D, Wolfensberger M (1985) Floccular Purkinje cell activity after bilateral neurectomy during optokinetic nystagmus (OKN) and smooth pursuit eye movements in primates (in preparation)

    Google Scholar 

  • Westheimer G, McKee SP (1975) Visual acuity in the presence of retinal image motion. J Opt Soc Am 65: 847–850

    Article  PubMed  CAS  Google Scholar 

  • Yingcharoen K, Rinvik E (1983) Ultrastructural degeneration of a projection from the flocculus to the nucleus prepositus hypoglossi in the cat. Exp Brain Res 51: 192–198

    Article  PubMed  CAS  Google Scholar 

  • Zee DS, Yee RD, Robinson DA (1976) Optokinetic responses in labyrinthine-defective human beings. Brain Res 113: 423–428

    Article  PubMed  CAS  Google Scholar 

  • Zee DS, Yamazaki A, Butler PH, Gucer G (1981) Effects of ablation of flocculus and paraflocculus on eye movements in primate. J Neurophysiol 46: 878–899

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Waespe, W., Henn, V. (1984). The Primate Flocculus in Visual-vestibular Interactions: Conceptual, Neurophysiological, and Anatomical Problems. In: Bloedel, J.R., Dichgans, J., Precht, W. (eds) Cerebellar Functions. Proceedings in Life Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-69980-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-69980-1_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-69982-5

  • Online ISBN: 978-3-642-69980-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics