Skip to main content

Motor Programs: Trajectory Versus Stability

  • Conference paper
Cerebellar Functions

Part of the book series: Proceedings in Life Sciences ((LIFE SCIENCES))

Abstract

Two subcortical systems converge on motor cortex and brainstem nuclei (Fig. 1). The basal ganglia receive from most or all of cerebral cortex (Kemp and Powell, 1971). Ablation prevents or slows movement, suggesting roles in the initiation and continuation of movement trajectories, and single unit studies have shown relationships to a variety of movement parameters, including direction, velocity/amplitude, pattern and force of muscular activity (Crutcher and Delong, 1984; Delong et al. 1983; Delong and Strick 1974; Georgopoulos et al. 1983a, b). By contrast, the cerebellum receives from a more restricted portion of cerebral cortex, including sensorimotor cortex and parts immediately adjacent in frontal and parietal lobes, and from other portions of the motor apparatus including spinal cord, reticular and vestibular nuclei (Bloedel and Courville 1981; Brodal 1978). Single unit studies had shown that lateral cerebellum fires before movement and even before motor cortex toward which it projects (Thach 1975, 1978), which seems to suggest a role in the programming of the initiation and the direction of trajectory. More medial portions fire later (Strick 1978; Thach 1978) and code for pattern and force of muscular activity (Thach 1978) and movement velocity (Burton and Onoda 1977, 1978; Soechting et al. 1978), which seems to suggest the continuous control of ongoing trajectory (Allen and Tsukahara 1974; Evarts and Thach 1969). Yet cerebellar ablation does not abolish movement trajectory, but instead gives rise to a variety of movement instabilities (Dow and Moruzzi 1958; Holmes 1939). This has suggested specific roles in control of movement and postural stability, possibly acting on reflex pathways (Gilman 1969; Gilman et al. 1971; Granit et al. 1955; Higgins and Glaser 1964; Higgins et al. 1962; Merton 1953; Soechting et al. 1978; Terzuolo et al. 1973; Vilis and Hore 1980; Terzuolo and Viviani 1974). Recent work (Schieber and Thach 1984a, b) on cerebellar unit discharge in monkeys performing trained pursuit tracking movements helps resolve apparent inconsistencies in cerebellar ablation and unit data, and at least in this task, suggests an exclusive role in the control of movement stability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen Gl, Tsukahara N (1974) Cerebrocerebellar communication systems. Physiol Rev 54: 957–1006

    Google Scholar 

  • Asanuma C, Thach WT, Jones EG (1983a) Distribution of cerebellar terminations and their relation to other afferent terminations in the ventral lateral thalamic region of the monkey. Brain Res Rev 5: 237–265

    Article  Google Scholar 

  • Asanuma C, Thach WT, Jones EG (1983b) Anatomical evidence for segregated focal groupings of efferent cells and their terminal ramifications in the cerebellothalamic pathway of the monkey. Brain Res Rev 5: 299–322

    Article  Google Scholar 

  • Bloedel JR, Courville J (1981) Cerebellar afferent systems. In: Brookhart JM, Mountcastle VB, Geiger SR (eds) Handbook of physiology, Sect 1: the nervous system, vol II. Motor control, part 1. Am Physiol Soc (Bethesda), pp 735–829

    Google Scholar 

  • Brodal P (1978) The corticopontine projection in the rhesus monkey. Origin and principles of organization. Brain 101: 251–283

    Article  PubMed  CAS  Google Scholar 

  • Burton JE, Onoda N (1977) Interpositus neuron discharge in relation to a voluntary movement. Brain Res 121: 167–172

    Article  PubMed  CAS  Google Scholar 

  • Burton JE, Onoda N (1978) Dependence of the activity of interpositus and red nucleus neurons on sensory input data generated by movement. Brain Res 152: 41–63

    Article  PubMed  CAS  Google Scholar 

  • Crutcher MD, Delong MR (1984) Single cell studies of the primate putamen. II. Relations to direction of movement and pattern of muscular activity, (in press)

    Google Scholar 

  • DeAjuriaguerra J, Tissot R (1969) The apraxias. In: Vinkin PJ, Bruyn GW (eds) Handbook of clinical neurology. North-Holland Publishing Co. Amsterdam, pp 48–66

    Google Scholar 

  • Delong MR, Strick P (1974) Relations of basal ganglia, cerebellum, and motor cortex units to ramp and ballistic movements. Brain Res 71: 327–355

    Article  PubMed  CAS  Google Scholar 

  • Delong MR, Crutcher MD, Georgopoulos AP (1983) Relations between movement and single cell discharge in the substantia nigra of the behaving monkey. J Neurosci 3: 1599–1606

    PubMed  CAS  Google Scholar 

  • Dow RS, MoruzziG (1958) The physiology and pathology of the cerebellum. Univ Minnesota Press, Minneapolis

    Google Scholar 

  • Elble RJ, Randall JE (1976) Motor unit activity responsible for the 8- to 12-Hz component of human physiological finger tremor. J Neurophysiol 39: 370–383

    PubMed  CAS  Google Scholar 

  • Elble RJ, Schieber MH, Thach WT (1981) Involvement of nucleus interpositus in action tremor. Soc Neurosci Abstr 7: 691

    Google Scholar 

  • Evarts EV, Thach WT (1969) Motor mechanisms of the CNS: cerebro cerebellar inter-relations. Annu Rev Physiol 31: 451–498

    Article  PubMed  CAS  Google Scholar 

  • Frysinger RC, Bourbonnais D, Kalaska JR, Smith AM (1984) Cerebellar cortical activity during antagonist cocontraction and reciprocal inhibition of forearm muscles. J Neurophysiol 51: 32–49

    PubMed  CAS  Google Scholar 

  • Georgopoulos AP, Delong MR, Crutcher MD (1983a) Relations between parameters of step-tracking movements and single cell discharge in the globus pallidus and subthalamic nucleus of the behaving monkey. J Neurosci 3: 1586–1598

    PubMed  CAS  Google Scholar 

  • Georgopoulos AP Caminiti R, Kalaska JR, Massey IT (1983b) Spatial coding of movement: a hypothesis concerning the coding of movement direction by motor cortical populations. Exp Brain Res Suppl 7: 327–336

    Google Scholar 

  • Oilman S (1969) The mechanism of cerebellar hypotonia. An experimental study in the monkey. Brain 92: 621–638

    Article  Google Scholar 

  • Oilman S Marco LA, Ebel HC (1971) Effects of medullary pyramidotomy in the monkey. II. Abnormalities of spindle afferent responses. Brain 94: 515–530

    Article  Google Scholar 

  • Granit R, Holmgren B, Merton PA (1955) The two routes for the excitation of muscle and their subservience to the cerebellum. J Physiol 130: 213–224

    PubMed  CAS  Google Scholar 

  • Higgins DC, Glaser GH (1964) Stretch responses during chronic cerebellar ablation. A study of reflex instability. J Neurophysiol 27: 49–62

    PubMed  CAS  Google Scholar 

  • Higgins DC, Partridge LD, Glaser GH (1962) A transient cerebellar influence on stretch responses. J Neurophysiol 25: 684–692

    PubMed  CAS  Google Scholar 

  • Hikosaka O, Wurtz RH (1983a) Visual and oculomotor functions of monkey substantia nigra pars reticulata. I. Relation of visual and auditory responses to saccades. J Neurophysiol 49: 1230–1253

    CAS  Google Scholar 

  • Hikosaka O, Wurtz RH (1983b) Visual and oculomotor functions of monkey substantia nigra pars reticulata. IV. Relation of substantia nigra to superior colliculus. J Neurophysiol 49: 1285–1301

    CAS  Google Scholar 

  • Holmes G (1939) The cerebellum of man. Brain 62: 1–30

    Article  Google Scholar 

  • Kalaska JR, Caminiti R, Georgopoulos AP (1983) Cortical mechanism related to the direction of two-dimensional arm movements: relations in parietal area 5 and comparison with motor cortex. Exp Brain Res 51: 247–260

    Article  PubMed  CAS  Google Scholar 

  • Kemp JM, Powell TPS (1971) The connexions of the striatum and globus pallid us: synthesis and speculation. Philos Trans R Soc London Ser B 262: 441–457

    Article  CAS  Google Scholar 

  • Lisberger SG, Fuchs AF (1974) Responses of flocculus Purkinje cells to adequate vestibular stimulation in the alert monkey: fixation vs. compensatory eye movements. Brain Res 69: 347

    Article  PubMed  CAS  Google Scholar 

  • Lucier GE, Ruegg DC, Wiesendanger M (1975) Responses of neurones in motor cortex and in area 3a to controlled stretches of forelimb muscles in Cebus monkeys. J Physiol 251: 833–853

    PubMed  CAS  Google Scholar 

  • Lynch JC, Mountcastje VB, Talbot WH, Yin TC (1977) Parietal lobe mechanisms for directed visual attention. J Neurophysiol 40: 362–389

    PubMed  CAS  Google Scholar 

  • Mackay WA, Murphy JT (1974) Responses of interpositus neurons to passive muscle stretch. J Neurophysiol 37: 1410–1423

    PubMed  CAS  Google Scholar 

  • Mattews PBS (1981) Muscles: their messages and their fusimotor supply. In: Brookhart JM, Mount-castle VB, Geiger ST (eds) Handbook of physiology, sect 1: the nervous system, vol II. Motor control. Am Physiol Soc (Bethesda), pp 189–228

    Google Scholar 

  • Merton PA (1953) Speculations on the servocontrol of movement. In: Malcolm JL, Gray JAB, Wolstenholme GEW (eds) The spinal cord. Little Brown, Boston, pp 183–198

    Google Scholar 

  • Mountcastle VB, Lynch JC, Georgopoulos A, Sakata H, Acuna C (1975) Posterior parietal association cortex of the monkey: command functions for operations within extrapersonal space. J Neurophysiol 38: 871–908

    PubMed  CAS  Google Scholar 

  • Niki H (1974a) Prefrontal unit activity during delayed alternation in the monkey. I. Relation to direction of response. Brain Res 68: 185–196

    Article  PubMed  CAS  Google Scholar 

  • Niki H (1974b) Prefrontal unit activity during delayed alternation in the monkey. II. Relation to absolute versus relative direction of responses. Brain Res 68: 197–204

    Article  PubMed  CAS  Google Scholar 

  • Penney JB, Young AB (1983) Speculations on the functional anatomy of basal ganglia disorders. Annu Rev Neurosci 6: 73–94

    Article  PubMed  Google Scholar 

  • Phillips CG, Powell TPS, Wiesdanger M (1971) Projection from low-threshold muscle afferents of hand and forearm to area 3a of baboon’s cortex. J Physiol 217: 419–446

    PubMed  CAS  Google Scholar 

  • Schieber MH, Thach WT (1984a) Trained slow tracking. I. Muscular production of wrist movement. J Neurophysiol. (in the press)

    Google Scholar 

  • Schieber MH, Thach WT (1984b) Trained slow tracking. I I. Bidirectional discharge of spindle afferent, motor cortex, and cerebellar nuclear neurons. J Neurophysiol (in the press)

    Google Scholar 

  • Smith AM, Bourbonnais D (1981) Neuronal activity in cerebellar cortex related to the control of 50 prehensile force. J Neurophysiol 45: 286–303

    PubMed  CAS  Google Scholar 

  • Smith AM, Kalaska JE, Swetts RW (1983) The activity of dentate and interpositus neurons during maintained isometric prehension. Proc Int Union Physiol Sei 29: 394

    Google Scholar 

  • Soechting JR, Burton JE, Onoda N (1978) Relationship between sensory input, motor output, and unit activity in interpositus and red nuclei during intentional movement. Brain Res 152: 65–79

    Article  PubMed  CAS  Google Scholar 

  • Stein RB, Lee RG (1981) Tremor and clonus. In: Brookhart JM, Mountcastle VB, Geiger SR (eds) Handbook of physiology, sect 1: The nervous system, vol II. Motor control, part 1. Am Physiol Soc (Bethesda), pp 325–344

    Google Scholar 

  • Strick P (1978) Cerebellar involvement in “volitional” responses to load changes. In: Desmedt JE (ed) Progress in clinical neurophysiology. Cerebral motor control in man: long loop mechanisms. Karger, Basel, pp 85–93

    Google Scholar 

  • Terzuolo CA, Viviani P (1974) Parameters of motion and EMG activities in some simple motor tasks in normal subjects and cerebellar patients. In: Cooper IS, Riklan M, Snider RS (eds) The cerebellum, epilepsy and behavior. Plenum Press, New York, pp 173–213

    Chapter  Google Scholar 

  • Terzuolo CA, Soechting JR, Viviani P (1973) Studies on the control of some simple motor tasks. II. On the cerebellar control of movements in relation to the formulation of intentional commands. Brain Res 58: 217–222

    Article  PubMed  CAS  Google Scholar 

  • Thach WT (1975) Timing of activity in cerebellar dentate nucleus and cerebral motor cortex during prompt volitional movement. Brain Res 88: 233–241

    Article  PubMed  CAS  Google Scholar 

  • Thach WT (1978) Correlation of neural discharge with pattern and force of muscular activity, joint position, and direction of intended movement in motor cortex and cerebellum. J Neurophysiol 41: 654–676

    PubMed  CAS  Google Scholar 

  • Thach WT, Perry G, Schieber MH (1982) Cerebellar output: body maps and muscle spindles. In: Palay S, Chan-Palay V (eds) The cerebellum: new vistas. Springer, Berlin Heidelberg New York, pp 440–454

    Chapter  Google Scholar 

  • Vüis T, Höre J (1980) Central neural mechanisms contributing to cerebellar tremor produced by limb perturbations. J Neurophysiol 43: 279–291

    Google Scholar 

  • Yamamoto T, Hassler R, Huber C, Wagner A, Sasaki K (1983) Electrophysiological studies on the pallido-and cerebellothalamic projections in squirrel monkeys ( Saimiri sciureus ). Exp Brain Res 51: 77–87

    PubMed  CAS  Google Scholar 

  • Young RR, Hagbarth KE (1979) Participation of the stretch reflex in human physiological tremor. Brain 102: 509–526

    Article  PubMed  Google Scholar 

  • Zee DS, Robinson DA (1979) An hypothetical explanation of saccadic oscillations. Ann Neurol 5: 405–414

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Thach, W.T., Schieber, M.H., Elble, R.H. (1984). Motor Programs: Trajectory Versus Stability. In: Bloedel, J.R., Dichgans, J., Precht, W. (eds) Cerebellar Functions. Proceedings in Life Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-69980-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-69980-1_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-69982-5

  • Online ISBN: 978-3-642-69980-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics