Skip to main content

Climbing Fiber Function: Regulation of Purkinje Cell Responsiveness

  • Conference paper
Cerebellar Functions

Part of the book series: Proceedings in Life Sciences ((LIFE SCIENCES))

  • 116 Accesses

Abstract

Since the intriguing theoretical paper by Marr (1969) on cerebellar cortical function, considerable attention has been directed towards the climbing fiber afferent system’s role in motor learning. According to this hypothesis (see also Gilbert (1975) and Albus (1971)), climbing fiber afferent input produces a persistent modification in the strength of the parallel fiber synapses on Purkinje cell dendrites. Subsequently it was proposed that this mechanism mediated the adaptation of the vestibuloocular reflex (VOR) gain (Ito 1972, 1979, Ito and Mijshita 1975, Robinson 1976). Supporting experiments showed that the inhibitory action of Purkinje cells on vestibular neurons was dependent on the integrity of the olivocerebellar system (Ito et al. 1978, 1979). Since these initial observations there has been considerable controversy concerning the role of the climbing fiber system in modifying the plasticity of the VOR (Miles et al. 1980, Demer and Robinson 1982, Lisberger 1982) and the efficacy of Purkinje cell action on their target neurons (Montarolo et al. 1981, Benedetti et al. 1983).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albus JS (1971) A theory of cerebellar function. Math Biosci 10: 25–61

    Article  Google Scholar 

  • Armstrong DM, Campbell CN, Edgley A, Schild RF, Trott JR (1982) Investigations of the olivocerebellar and spino-olivary pathways. In: Palay SL, Chan-Palay V (eds) The cerebellum: new vistas. Springer, Berlin Heidelberg New York, pp 192–222

    Google Scholar 

  • Benedetti F, Montarolo PG, Strata P, Tempia F (1983) Inferior olive inactivation decreases the excitability of the intracerebellar and lateral vestibular nuclei in the rat. J Physiol 340: 195–208

    PubMed  CAS  Google Scholar 

  • Bloedel JR, Courville J (1981) A review of cerebellar afferent systems. In: Brooks VB (ed) Hand-book of physiology, vol II. Motor control. Williams and Wilkins, Baltimore, pp 735–830

    Google Scholar 

  • Bloedel JR, Roberts WJ (1971) Action of climbing fibers in cerebellar cortex of the cat. J Neuro-physiol 34: 17–31

    CAS  Google Scholar 

  • Bloedel JR, Ebner TJ, Yu QX (1983) Increased responsiveness of Purkinje cells associated with climbing fiber inputs to neighboring neurons. J Neurophysiol 50: 220–239

    PubMed  CAS  Google Scholar 

  • Colin F, Mardi J, Desclin JC (1980) The olivocerebellar system. I. Delayed and slow inhibitory ef-fects: An overlooked salient feature of cerebellar climbing fibers. Brain 187: 3–27

    Google Scholar 

  • Demer JL, Robinson DA (1982) Effects of reversible lesions and stimulation of olivocerebellar sys-tem on vestibuloocular reflex plasticity. J Neurophysiol 47: 1084–1107

    PubMed  CAS  Google Scholar 

  • Ebner TJ, Bloedel JR (1981a) Role of climbing fiber afferent input in determining responsiveness of Purkinje cells to mossy fiber inputs. J Neurophysiol 45: 962–971

    PubMed  CAS  Google Scholar 

  • Ebner TJ, Bloedel JR (1981b) Temporal patterning in simple spike discharge of Purkinje cells and its relationship to climbing fiber activity. J Neurophysiol 45: 933–947

    PubMed  CAS  Google Scholar 

  • Ebner TJ, Yu QX, Bloedel JR (1983) Increase in Purkinje cell gain associated with naturally activated climbing fiber input. J Neurophysiol 50: 205–219

    PubMed  CAS  Google Scholar 

  • Eccles JC, Ito M, Szentagothai J (1967) The cerebellum as a neuronal machine. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Gilbert P (1975) How the cerebellum could memorise movements. Nature (London) 254: 688–689

    Article  CAS  Google Scholar 

  • Granit R, Phillips CG (1956) Excitatory and inhibitory processes acting upon individual Purkinje cells of the cerebellum in cats. J Physiol 133: 520–547

    PubMed  CAS  Google Scholar 

  • Haines DE, Patrick GW, Satrulee P (1982) Organization of cerebellar corticonuclear fiber systems. In: Palay SL, Chan-Palay V (eds) The cerebellum: new vistas. Springer, Berlin Heidelberg New York, pp 320–371

    Chapter  Google Scholar 

  • Ito M (1972) Neural design of the cerebellar motor control system. Brain Res 40: 81–84

    Article  PubMed  CAS  Google Scholar 

  • Ito M (1979) Neuroplasticity. Is the cerebellum really a computer? Trends Neurosci 2: 122–126

    Article  Google Scholar 

  • Ito M, Kano M (1982) Long-lasting depression of parallel fiber-Purkinje cell transmission induced by conjunctive stimulation of parallel fibers and climbing fibers in the cerebellar cortex. Neuro-sci Lett 33: 253–258

    Article  CAS  Google Scholar 

  • Ito M, Mijshita Y (1975) The effects of chronic destruction of the inferior olive upon visual modifi-cation of the horizontal vestibulo-ocular reflex of rabbits. Proc Jpn Acad 51: 716–720

    Google Scholar 

  • Ito M, Orlov I, Shimoyama I (1978) Reduction of the cerebellar stimulus effect on rat Deiters neu-rons after chemical destruction of the inferior olive. Exp Brain Res 33: 143–145

    Article  PubMed  CAS  Google Scholar 

  • Ito M, Nisimaru N, Shibuki K (1979) Destruction of inferior olive induces rapid depression in synaptic action of cerebellar Purkinje cells. Nature (London) 277: 568–569

    Article  CAS  Google Scholar 

  • Ito M, Sakurai M, Tongroach P (1982) Climbing fibre induced depression of both mossy fibre re- sponsiveness and glutamate sensitivity of cerebellar Purkinje cells. J Physiol 324: 113–134

    PubMed  CAS  Google Scholar 

  • Lisberger SG (1982) Role of the cerebellum during motor learning in the vestibulo-ocular reflex. Trends Neurosci 5: 437–440

    Article  Google Scholar 

  • Llinâs R, Sugimori M (1980) Electrophysiological properties of in vitro Purkinje cell dendrites in mammalian cerebellar slices. J Physiol 305: 197–213

    PubMed  Google Scholar 

  • Llinâs R, Volkind RA (1973) The olivo-cerebellar system. Functional properties as revealed by harmaline-induced tremor. Exp Brain Res 18: 69–87

    Google Scholar 

  • Llinâs R, Yarom Y (1981) Electrophysiology of mammalian inferior olivary neurones in vitro. Different types of voltage-dependent ionic conductances. J Physiol 315: 549–567

    Google Scholar 

  • Llinâs R, Baker R, Sotelo C (1974) Electronic coupling between neurons in cat inferior olive. J Neurophysiol 37: 5 60–5 71

    Google Scholar 

  • Marr D (1969) A theory of cerebellar cortex. J Physiol 202: 437–470

    PubMed  CAS  Google Scholar 

  • McDevitt CJ, Ebner TJ, Bloedel JR (1982) The changes in Purkinje cell simple spike activity following spontaneous climbing fiber inputs. Brain Res 237: 484–491

    Article  PubMed  CAS  Google Scholar 

  • Miles FA, Braitman DJ, Dow BM (1980) Long-term adaptive changes in primate vestibuloocular reflex. IV. Electrophysiological observations in flocculus of adapted monkeys. J Neurophysiol 43: 1477–1493

    Google Scholar 

  • Montarolo PG, Raschi F, Strata P (1981) Are the climbing fibres essential for the Purkinje cell inhibitory action? Exp Brain Res 42: 215–218

    Article  PubMed  CAS  Google Scholar 

  • Mugnaini E (1983) The length of cerebellar parallel fibers in chicken and rhesus monkey. J Comp Neurol 220: 7–15

    Article  PubMed  CAS  Google Scholar 

  • Palay SL, Chan-Palay V (1974) Cerebellar cortex. Cytology and organization. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Robinson DA (1976) Adaptive gain control of vestibuloocular reflex by the cerebellum. J Neurophysiol 39: 954–969

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bloedel, J.R., Ebner, T.J. (1984). Climbing Fiber Function: Regulation of Purkinje Cell Responsiveness. In: Bloedel, J.R., Dichgans, J., Precht, W. (eds) Cerebellar Functions. Proceedings in Life Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-69980-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-69980-1_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-69982-5

  • Online ISBN: 978-3-642-69980-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics