Skip to main content

How are “Move” and “Hold” Programs Matched?

  • Conference paper
Cerebellar Functions

Part of the book series: Proceedings in Life Sciences ((LIFE SCIENCES))

Abstract

Motor control is going through a productive “crisis” of concept formation (Holton, 1973; cf. Brooks 1975; Granit, 1981). Research on movements and their neural control control is advancing so rapidly that new concepts have arisen even since the publication of recent “Handbooks” (e.g. Brooks, 1981; Towe and Luschei, 1981; Desmedt, 1983). In this article I adress a question that is implied in Holmes’ (1917) description of “decomposition of movements” after cerebellar damage: how does the cerebellum normally assist in the composition of intended movements? How are errors of direction, rate, and range avoided? Since posture and movements merge one into the other, the question is rephrased as: how does the cerebellum match “move” and “hold” programs? (Other functions of the cerebellum, including those with regard to non-programmed movements are not dealt with here, those considerations can be found in broader reviews (e.g. Bloedel and Courville, 1981; Brooks and Thach, 1981; Llinas, 1981).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abend W, Bizzi E, Morasso P (1982) Human arm trajectory formation. Brain 105: 331–348

    Article  PubMed  CAS  Google Scholar 

  • Bernstein N (1967) The coordination and regulation of movements. Pergamon Press, Oxford New York

    Google Scholar 

  • Bizzi E, Abend W (1983) Posture control and trajectory formation in single-and multi joint arm movements. In: Desmedt RE (ed) Motor control mechanism in health and disease, Adv Neurol, vol 39. Raven Press, New York, pp 31–45

    Google Scholar 

  • Bloedel JR, Courville J (1981) Cerebellar afferent systems. In: Brooks VB (ed) Motor control. Handbook of physiology, sect 1, vol II. Am Physiol Soc (Bethesda), pp 735–829

    Google Scholar 

  • Brooks VB (1974) Some examples of programmed limb movements. Brain Res 71: 299–308

    Article  PubMed  CAS  Google Scholar 

  • Brooks VB (1975) Opening remarks for the symposium. Can J Neurol Sci 2: 221–222

    Google Scholar 

  • Brooks VB (1979) Control of intended limb movements by the lateral and intermediate cerebellum. In: Asanuma H, Wilson VJ (eds) Integration in the nervous system. Igaku Shoin, Tokyo, pp 321–357

    Google Scholar 

  • Brooks VB (1981) (ed) Motor control, Handbook of physiology, sect 1, vol II. Am Physiol Soc (Bethesda)

    Google Scholar 

  • Brooks VB (1983a) The cerebellum and adaptive tuning of movements. In: Willis WD, Schmidt RF (eds) Exp Brain Res (Suppl) Springer, Berlin Heidelberg New York (in press)

    Google Scholar 

  • Brooks VB (1983b) Study of brain function by local, reversible cooling. Rev Physiol Biochem Pharmacol 95: 1–109.

    Article  Google Scholar 

  • Brooks VB, Thach WT (1981) Cerebellar control of posture and movement. In: Brooks VB (ed) Motor control, Handbook of physiology, sect 1, vol II. Am Physiol Soc (Bethesda), pp 877–946

    Google Scholar 

  • Brooks VB, Watts S (1983) Task-oriented adaptations of cocontraction of opposing muscles (“tun-ing”) depend on the neocerebellum. Soc Neurosci Abstr 9: 606

    Google Scholar 

  • Brooks VB, Cooke JD, Thomas JS (1973) The continuity of movements. In: Stein RB, Pearson KG, Smith RS, Redford JB (eds) Control of posture and locomotion. Plenum Press, New York, pp 257–272

    Google Scholar 

  • Brooks VB, Kennedy PR, Ross HG (1983) Movement programming depends on understanding of behavioral requirements. Physiol Behav 31: 561–563

    Article  PubMed  CAS  Google Scholar 

  • Cheney PD, Fetz EE (1984) Corticomotoneuronal cells contribute to long-latency stretch reflexes in the rhesus monkey. J Physiol 349 (in press)

    Google Scholar 

  • Conrad B, Matsunami K, Meyer-Lohman J, Wiesendanger M, Brooks VB (1974) Cortical load compensation during voluntary elbow movements. Brain Res 71: 507–514

    Article  PubMed  CAS  Google Scholar 

  • Conrad B, Meyer-Lohmann J, Matsunami K, Brooks VB (1975) Precentral unit activity following torque pulse injections into elbow movements. Brain Res 94: 219–236

    Article  PubMed  CAS  Google Scholar 

  • Cooke JD (1980) The role of stretch reflexes during active movements. Brain Res 181: 493–497

    Article  PubMed  CAS  Google Scholar 

  • Desmedt JE (1983) (ed) Motor control mechanisms in health and disease, advances in neurology, vol 39. Raven Press, New York

    Google Scholar 

  • Evarts EV (1981) Role of motor cortex in voluntary movements in primates. In: Brooks VB (ed) Motor control, Handbook of physiology, sect 1, vol II. Am Physiol Soc (Bethesda), pp 1083–1120

    Google Scholar 

  • Evarts EV, Tanji J (1974) Gating of motor cortex reflexes by prior instruction. Brain Res 71: 479–494

    Article  PubMed  CAS  Google Scholar 

  • Fetz E (1981) Neuronal activity associated with conditioned limb movements. In: Towe AL, Luschei ES (eds) Motor coordination, Handbook of behavioral neurobiology, vol 5. Plenum Press, New York, pp 493–526

    Google Scholar 

  • Georgopoulos AP, Kalaska JF, Massey JT (1981) Spatial trajectories and reaction times of aimed movements: effects of practice, uncertainty. and change in target location. J Neurophysiol 46: 725–743

    PubMed  CAS  Google Scholar 

  • Georgopoulos AP, Kalaska JF, Caminiti R, Massey JT (1982) On the relations between the direction of two-dimensional arm movements and cell discharge in primate motor cortex. J Neurosci 2: 1527–1537

    PubMed  CAS  Google Scholar 

  • Georgopoulos AP, Caminiti R, Kalaska JF, Massey JT (1983) Spatial coding of movement direction by motor cortical populations. In: Massion J, Paillard J, Schultz W, Wiesendanger M (eds) Neural coding of motor performance, Exp Brain Res (suppl 7 ). Springer, Berlin Heidelberg New York, pp 327–336

    Google Scholar 

  • Gilman S, Can D, Hollenberg J (1976) Kinematic effects of deafferentation and cerebellar ablation. Brain 99: 311–330

    Article  PubMed  CAS  Google Scholar 

  • Granit R (1981) Comments on history of motor control. In: Brooks VB (ed) Motor control, Handbook of physiology, sect 1, vol II. Am Physiol Soc (Bethesda), pp 1–16

    Google Scholar 

  • Holmes G (1917) The symptoms of acute cerebellar injuries due to gunshot wounds. Brain 40: 461–5 35

    Google Scholar 

  • Holton G (1973) Thematic origins of scientific thought, Kepler to Einstein. Harvard Univ Press, Cambridge

    Google Scholar 

  • Hore J, Vilis T (1984) Loss of set in muscle responses to limb perturbations during cerebellar dysfunction. J Neurophysiol (in Press)

    Google Scholar 

  • Jeannerod M, Prablanc C (1983) Visual control of reaching movements. In: Desmedt JE (ed) Motor control mechanisms in health and disease, advances in neurology, vol 39. Raven Press, New York, pp 13–29

    Google Scholar 

  • Kwan HC, Murphy JT, Repeck MW (1979) Control of stiffness by the medium latency electromyographic response to limb perturbation. Can J Physiol Pharmacol 57: 277–285

    Article  PubMed  CAS  Google Scholar 

  • Lacquaniti F, Soechting JF (1983) Changes in mechanical impedance and gain of myotatic response during transitions between two motor tasks. In: Massion J, Paillard J, Schultz W, Wiesendanger M (eds) Neural coding of motor performance, Exp Brain Res (Supp17). Springer, Verlin Heidelberg New York, pp 135–139

    Google Scholar 

  • Lee RG, Murphy JT, Tatton WG (1983) Long-latency myotatic reflexes in man’ mechanisms, functional significance, and changes in patients with Parkinson’ disease or hemiplegia. In: Desmedt JE (ed) Cerebral motor control mechanisms in health and disease, advances in neurology, vol 39. Raven Press, New York, pp 489–508

    Google Scholar 

  • Lenz FA, Tatton WG, Tasker RR (1983) The effect of cortical lesions on the electromyographic response to joint displacement in the squirrel monkey forelimb. J Neurosci 3: 795–805

    PubMed  CAS  Google Scholar 

  • Lestienne F, Polit A, Bizzi E (1981) Functional organization of the motor process underlying the transition from movement to posture. Brain Res 230: 121–131

    Article  PubMed  CAS  Google Scholar 

  • Llinâs RR (1981) Cerebellar networks. In: Brooks VB (ed) Motor control, Handbook of physiology, sect 1, vol II. Am Physiol Soc (Bethesda), pp 831–876

    Google Scholar 

  • Marsden CD, Merton PE, Morton HB, Adam J (1977) The effect of lesions of sensorimotor cortex and the capsular pathways on servo responses from the human long thumb flexor. Brain 100: 503–526

    Article  PubMed  CAS  Google Scholar 

  • Marsden DC, Merton PE, Morton HB, Adam J (1978) The effect of lesions of the central nervous system on long-latency stretch reflexes in the human thumb. In: Desmedt JE (ed) Cerebral motor control in man: long loop mechanisms. Prog Clin Neurophysiol, vol IV. Karger, Basel, pp 334–341

    Google Scholar 

  • Melvill Jones G, Watt DGD (1971a) Observations on the control of stepping and hopping movements in man. J Physiol 219: 709–727

    Google Scholar 

  • Georgopoulos AP, Kalaska JF, Massey JT (1981) Spatial trajectories and reaction times of aimed movements: effects of practice, uncertainty. and change in target location. J Neurophysiol 46: 725–743

    PubMed  CAS  Google Scholar 

  • Georgopoulos AP, Kalaska JF, Caminiti R, Massey JT (1982) On the relations between the direction of two-dimensional arm movements and cell discharge in primate motor cortex. J Neurosci 2: 1527–1537

    PubMed  CAS  Google Scholar 

  • Meyer-Lohmann J, Hore J, Brooks VB (1977) Cerebellar participation in generation of prompt arm movements. J Neurophysiol 40: 1038–1050

    PubMed  CAS  Google Scholar 

  • Miller AD, Brooks VB (1981) Late muscular responses to arm perturbations persist during supra-spinal dysfunctions in monkeys. Exp Brain Res 41: 146–158

    Article  PubMed  CAS  Google Scholar 

  • Miller AD, Brooks VB (1982) Parallel pathways for movement initiation in monkeys. Exp Brain Res 45: 328–332

    Article  PubMed  CAS  Google Scholar 

  • Nashner LM (1976) Adapting reflexes controlling the human posture. Exp Brain Res 26: 59–72

    Article  PubMed  CAS  Google Scholar 

  • Nashner LM, Grimm RJ (1978) Analysis of multiloop dyscontrols in standing cerebellar patients. In: Desmedt JE (ed) Cerebral motor control in man: long loop mechanisms. Progr Clin Neuro-physiol, vol V. Karger, Basel, pp 300–319

    Google Scholar 

  • Llinâs RR (1981) Cerebellar networks. In: Brooks VB (ed) Motor control, Handbook of physiology, sect 1, vol II. Am Physiol Soc (Bethesda), pp 831–876

    Google Scholar 

  • Phillips CG (1969) Motor apparatus of the baboon’s hand. The Ferrier lacture. Proc R Soc London Ser B 173: 141–174

    Article  CAS  Google Scholar 

  • Phillips CG, Porter R (1977) Corticospinal neurones. Their role in movement. Academic Press, London New York

    Google Scholar 

  • Ruegg DG, Chofflon M (1983) Peripheral and transcortical loops activated by electrical stimulation of the tibial nerve in the monkey. Exp Brain Res 50: 293–298

    Article  PubMed  CAS  Google Scholar 

  • Strick PL (1983) The influence of motor preparation on the response of cerebellar neurons to limb displacements. J Neurosci 3: 2007–2020

    PubMed  CAS  Google Scholar 

  • Tanji J, Evarts EV (1976) Anticipatory activity of motor cortex neurons in relation to direction of an intended movement. J Neurophysiol 39: 1062–1068

    PubMed  CAS  Google Scholar 

  • Towe AL, Luschei ES (1981) (eds) Motor coordination, Handbook of behavioral neurobiology, vol V. Plenum Press, New York

    Google Scholar 

  • Llinâs BR (1981) Cerebellar networks. In: Brooks V (ed) Motor control, Handbook of physiology, sect 1, vol II. Am Physiol Soc (Bethesda), pp 477–876

    Google Scholar 

  • Vilis T, Cooke JD (1976) Modulation of the functional stretch reflex by the segmental reflex pathway. Exp Brain Res 25: 247–254

    Article  PubMed  CAS  Google Scholar 

  • Vilis T, Hore J (1977) Effects of changes in mechanical state of limb on cerebellar intention tremor. J Neurophysiol 40: 1214–1224

    PubMed  CAS  Google Scholar 

  • Vilis T, Hore J (1980) Central neural mechanisms contributing to cerebellar tremor produced by limb perturbations. J Neurophysiol 43: 279–291

    PubMed  CAS  Google Scholar 

  • Vilis T, Hore J, Meyer-Lohmann H, Brooks VB (1976) Dual nature of the precentral responses to limb perturbations revealed by cerebellar cooling. Brain Res 177: 336–340

    Article  Google Scholar 

  • Viviani P, Terzuolo C (1980) Space-time invariance in learned motor skills. In: Stelmach GE, Requin J (eds) Tutorials in motor behavior. Adv Psychol, vol I. North-Holland Publ Co, Amsterdam, pp 525–533

    Chapter  Google Scholar 

  • Wiesendanger M, Miles W (1982) Ascending pathway of low-threshold muscle afferents to the cerebral cortex and its possible role in motor control. Physiol Rev 1982, 1234–1270

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Brooks, V.B. (1984). How are “Move” and “Hold” Programs Matched?. In: Bloedel, J.R., Dichgans, J., Precht, W. (eds) Cerebellar Functions. Proceedings in Life Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-69980-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-69980-1_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-69982-5

  • Online ISBN: 978-3-642-69980-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics