Skip to main content

Molecular Aspects of Central Neurotransmitter Function

  • Conference paper
Transmitter Molecules in the Brain

Part of the book series: Basic and Clinical Aspects of Neuroscience ((BASIC,volume 2))

Abstract

It is clear from the previous chapters that the list of substances that may be considered as possible neurotransmitters in the central nervous system is rapidly growing. In addition to the now ‘classical’ neurotransmitters such as acetylcholine, monoamines and amino acids (amongst which there are also new tentative candidates such as adrenaline and taurine), there are now scores of neuropeptide candidates. Few of these have been shown to fully satisfy the criteria for acceptance as neurotransmitters. Nevertheless, in many cases there is evidence fully consistent with, and suggestive of, a role in chemical neurotransmission. A general impression has developed that neural actions of peptides are inordinately slow in onset and offset and that they should therefore be regarded more as long-term neuromodulators than as true transmitters. This may relate in part to our limited ability to rapidly deliver adequate concentrations of peptides to the correct neuronal loci, due to factors such as poor ejection from micropipettes and the presence of powerful peptide-degrading enzymes in neuronal tissue [31].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aghajanian GK (1985) Modulation of a transient outward current in serotonergic neurones by α1-adrenoceptors. Nature 315: 501–503

    Article  PubMed  CAS  Google Scholar 

  2. Albert KA, Helmer-Matyjek E, Nairn AC, Muller TH, Haycock JW, Greene LA, Goldstein M, Greengard P (1984) Calcium/ phospholipid-dependent protein kinase (protein kinase C) phosphorylates and activates tyrosine hydroxylase. Proc Natl Acad Sci USA 81: 7713–7717

    Article  PubMed  CAS  Google Scholar 

  3. Alger BE, Nicoll RA (1982) Pharmacological evidence for two kinds of GABA receptor on rat hippocampal pyramidal cells studied in vitro. J Physiol (Lond) 328: 125–141

    CAS  Google Scholar 

  4. Anderson RA, Mitchell R (1986) Biphasic effect of GABAA receptor agonists on prolactin secretion: evidence for two types of GABAA receptor complex on lactotrophes. Eur J Pharmacol 124: 1–9

    Article  PubMed  CAS  Google Scholar 

  5. Barinaga M, Bilezikjian LM, Vale WW, Rosenfeld MG, Evans RM (1985) Independent effects of growth hormone releasing factor on growth hormone release and gene transcription. Nature 314: 279–281

    Article  PubMed  CAS  Google Scholar 

  6. Barker JL, Dufy B, Owen D, Segal M (1983) Excitable membrane properties of cultured CNS neurons and clonal pituitary cells. Cold Spring Harbor Symp Quant Biol 48: 259–268

    PubMed  CAS  Google Scholar 

  7. Barker JL, Mathers DA (1981) GABA analogues activate channels of different duration on cultured mouse spinal neurons. Science 212: 358–361

    Article  PubMed  CAS  Google Scholar 

  8. Barker JL, Ransom BR (1978) Amino acid pharmacology of mammalian central neurones grown in tissue culture. J Physiol (Lond) 280: 331–354

    CAS  Google Scholar 

  9. Berridge MJ, Dawson RMC, Downes CP, Heslop JP, Irvine RF (1983) Changes in the levels of inositol phosphates after agonist-dependent hydrolysis of membrane phospholipids. Biochem J 212: 473–482

    PubMed  CAS  Google Scholar 

  10. Berridge MJ, Irvine RF (1984) Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature 312: 315–321

    Article  PubMed  CAS  Google Scholar 

  11. Braestrup C (1982) Neurotransmitters and CNS disease: anxiety. Lancet ii: 1030–1034

    Article  Google Scholar 

  12. Brisson A, Unwin PNT (1985) Quaternary structure of the acetylcholine receptor. Nature 315: 474–477

    Article  PubMed  CAS  Google Scholar 

  13. Brown DA (1983) Slow cholinergic excitation—a mechanism for increasing neuronal excitability. Trends Neurosci 6: 302–307

    Article  Google Scholar 

  14. Codina J, Hildebrandt JD, Sekura RD, Birnbaumer M, Bryan J, Manclark R, Iyengar R, Birnbaumer L (1984) Ns and Ni? the stimulatory and inhibitory regulatory components of adenyl cyclases: purification of the human erythrocyte proteins without the use of activating regulatory ligands. J Biol Chem 259: 5871–5886

    PubMed  CAS  Google Scholar 

  15. DeRiemer SA, Strong JA, Albert KA, Greengard P, Kaczmarek LK (1985) Enhancement of calcium current in Aplysia neurones by phorbolester and protein kinase C. Nature 313: 313–316

    Article  PubMed  CAS  Google Scholar 

  16. Detre JA, Nairn AC, Aswad DW, Greengard P (1984) Localization in mammalian brain of G-substrate, a specific substrate for guanosine 3′,5′-cyclic monophosphate-dependent protein kinase. J Neurosci 4: 2843–2849

    PubMed  CAS  Google Scholar 

  17. Drummond AH (1985) Bidirectional control of cytosolic free calcium by thyrotropin-releasing hormone in pituitary cells. Nature 315: 752–755

    Article  PubMed  CAS  Google Scholar 

  18. Drummond AH, Benson JA, Levitan IE (1980) Serotonin-induced hyperpolarisation of an identified Aplysia neuron is mediated by cyclic AMP. Proc Natl Acad Sci USA 77: 5013–5017

    Article  PubMed  CAS  Google Scholar 

  19. Dunlap K, Fischbach GD (1981) Neurotransmitters decrease the calcium conductance activated by depolarisation of embryonic chick sensory neurones. J Physiol (Lond) 317: 519–535

    CAS  Google Scholar 

  20. Ewald DA, Williams A, Levitan IB (1985) Modulation of single Ca2+-dependent K+ channel activity by protein phosphorylation. Nature 315: 503–506

    Article  PubMed  CAS  Google Scholar 

  21. Gonzales RA, Crews FT (1984) Characterisation of the cholinergic stimulation of phosphoinositide hydrolysis in rat brain slices. J Neurosci 4: 3120–3127

    PubMed  CAS  Google Scholar 

  22. Greengard P (1978) Phosphorylated proteins as physiological effectors. Science 199: 146–152

    Article  PubMed  CAS  Google Scholar 

  23. Hartzell HC (1981) Mechanisms of slow synaptic potentials. Nature 291: 539–544

    Article  PubMed  CAS  Google Scholar 

  24. Havrankova J, Roth J, Brownstein M (1978) Insulin receptors are widely distributed in the central nervous system of the rat. Nature 272: 827–829

    Article  PubMed  CAS  Google Scholar 

  25. Hazum E, Cuatrecasas P, Marian J, Conn PM (1980) Receptor-mediated internalisation of fluorescent gonadotropin-releasing hormone by pituitary gonadotropes. Proc Natl Acad Sci USA 77: 6692–6695

    Article  PubMed  CAS  Google Scholar 

  26. Iversen LL (1983) Neuropeptides—what next? Trends Neurosci 6: 293–294

    Article  Google Scholar 

  27. Jan YN, Jan LY (1983) An LHRH-like peptidergic neurotrans-mitter capable of action at a distance in autonomic ganglia. Trends Neurosci 6: 320–325

    Article  Google Scholar 

  28. Johnson M, Mitchell R, Fink G (1986) The priming effect of LHRH: is protein kinase C involved? Proc Br Endocrine Soc, April

    Google Scholar 

  29. Kaczorowski GJ, Vandlen RL, Katz GM, Reuben JP (1983) Regulation of excitation-secretion coupling by thyrotropin-releasing hormone (TRH): evidence for TRH receptor-ion channel coupling in cultured pituitary cells. J Membr Biol 71: 109–118

    Article  PubMed  CAS  Google Scholar 

  30. Kelleher DJ, Pessin JE, Ruoho AE, Johnson GL (1984) Phorbolester induces desensitisation of adenylate cyclase and phosphorylation of the β-adrenergic receptor in turkey erythrocytes. Proc Natl Acad Sci USA 81: 4316–4320

    Article  PubMed  CAS  Google Scholar 

  31. Kelly JS (1982) Electrophysiology of peptides in the central nervous system. Br Med Bull 38: 283–290

    PubMed  CAS  Google Scholar 

  32. Lapetina EG, Watson SP, Cuatrecasas P (1984) Myo-inositol 1,4,5-triphosphate stimulates protein phosphorylation in saponin-permeabilised human platelets. Proc Natl Acad Sci USA 81: 7431–7435

    Article  PubMed  CAS  Google Scholar 

  33. Levitan IB, Lemos JT, Novak-Hofer I (1983) Protein phosphorylation and the regulation of ion channels. Trends Neurosci 6: 496–499

    Article  CAS  Google Scholar 

  34. Lundberg JM, Hokfelt T (1983) Coexistence of peptides and classical transmitters. Trends Neurosci 6: 325–333

    Article  CAS  Google Scholar 

  35. Madison DV, Nicholl RA (1982) Noradrenaline blocks accommodation of pyramidal cell discharge in the hippocampus. Nature 299: 636–638

    Article  PubMed  CAS  Google Scholar 

  36. Matthews HR, Torre V, Lamb TD (1985) Effects on the photoresponse of calcium buffers and cyclic GMP incorporated into the cytoplasm of retinal rods. Nature 313: 582–584

    Article  PubMed  CAS  Google Scholar 

  37. McAllister-Williams RH, Mitchell R (1985) Benzodiazepines regulate coupling to anion channels in only some GABAa receptor complexes. Br J Pharmacol 84: 60 P

    Google Scholar 

  38. McBurney RN (1983) New approaches to the study of rapid events underlying neurotransmitter action. Trends Neurosci 6: 297–302

    Article  CAS  Google Scholar 

  39. Michell RH (1975) Inositol phospholipids and cell surface receptor function. Biochim Biophys Acta 415: 81–147

    PubMed  CAS  Google Scholar 

  40. Mitchell R, Anderson RA (1985) Antagonism by strychnine differentiates two subtypes of GABAA receptor complex. Biochem Soc Trans 13: 1216–1217

    CAS  Google Scholar 

  41. Mitchell R, Anderson RA (1985) Does an anion channel mediate the action of K opioid receptors? Regul Pept [Suppl] 4: 191–196

    CAS  Google Scholar 

  42. Mitchell R, Ogier S-A, Johnson M, Cleland A, Bennie J, Fink G (1986) Evidence for sex differences in GnRH receptors and mechanism of action. In: Neuroendocrine molecular biology. Ed: Fink G, Harmar AJ & McKerns KW Plenum, London, pp 91–100

    Google Scholar 

  43. Murdoch GH, Rosenfeld MG, Evans RM (1982) Eukaryotic transcriptional regulation and chromatin-associated phosphory-lation by cyclic AMP. Science 218: 1315–1317

    Article  PubMed  CAS  Google Scholar 

  44. Naor Z, Amsterdam A, Catt KJ (1984) Binding and activation of gondadotropin-releasing hormone receptors in pituitary gonadotropes. In: Hormone receptors in growth and reproduction. Ed: Fink G, Harmar AJ & McKerns KW Raven, New York, pp 113–124

    Google Scholar 

  45. Neher E, Sakmann B (1976) Single-channel currents recorded from membrane of denervated frog muscle fibres. Nature 260: 799–802

    Article  PubMed  CAS  Google Scholar 

  46. Newberry NR, Priestley T, Woodruff GN (1985) Pharmacological distinction between two muscarinic responses on the isolated superior cervical ganglion of the rat. Eur J Pharmacol 116: 191–192

    Article  PubMed  CAS  Google Scholar 

  47. Nishizuka Y (1984) The role of protein kinase C in cell surface signal transduction and tumour promotion. Nature 308: 693–698

    Article  PubMed  CAS  Google Scholar 

  48. Noda M, Takahashi H, Tanabe T, Toyosato M, Kikyotani S, Furutani Y, Hirose T, Takashima H, Inayama S, Miyata T, Numa S (1983) Structural homology of Torpedo californica acetylcholine receptor subunits. Nature 302: 528–532

    Article  PubMed  CAS  Google Scholar 

  49. Nowak LM, Macdonald RL (1982) Substance P: ionic basis for depolarising responses in cell culture. J Neurosci 2: 1119–1128

    PubMed  CAS  Google Scholar 

  50. Olsen RW, Fischer JB, King RG, Ransom JY, Stauber GB (1984) Purification of the GABA/benzodiazepine/barbiturate receptor complex. Neuropharmacology 23 (7B): 853–855

    Article  CAS  Google Scholar 

  51. Oron Y, Dascal N, Nadler E, Lupu M (1985) Inositol 1,4,5-trisphosphate mimics muscarinic response in Xenopus oocytes. Nature 313: 141–143

    Article  PubMed  CAS  Google Scholar 

  52. Osterreider W, Brum G, Hescheler J, Trautwein W, Flockerzi V, Hofmann F (1982) Injection of subunits of cyclic AMP-dependent protein kinase into cardiac myocytes modulates Ca2+ current. Nature 298: 576–578

    Article  Google Scholar 

  53. Paupardin-Tritsch D, Colombaioni L, Deterre P, Gerschenfeld HM (1985) Two different mechanisms of calcium spike modulation by dopamine. J Neurosci 5: 2522–2532

    PubMed  CAS  Google Scholar 

  54. Rasmussen H, Barrett PQ (1984) Calcium messenger system—an integrated view. Physiol Rev 64: 938–984

    PubMed  CAS  Google Scholar 

  55. Reuter H (1983) Calcium channel modulation by neurotransmitters, enzymes and drugs. Nature 301: 569–574

    Article  PubMed  CAS  Google Scholar 

  56. Reyl-Desmars F, Lewin MJM (1982) Evidence for an intracellular somatostatin receptor in pancreas: a comparative study with reference to gastric mucosa. Biochem Biophys Res Comm 109: 1324–1331

    Article  PubMed  CAS  Google Scholar 

  57. Rink TJ, Sanchez A, Hallam TJ (1983) Diacyl glycerol and phorbol ester stimulate secretion without raising cytoplasmic free calcium in human platelets. Nature 305: 317–319

    Article  PubMed  CAS  Google Scholar 

  58. Rodbell M (1980) The role of hormone receptors and GTP-regulatory proteins in membrane transduction. Nature 284: 17–22

    Article  PubMed  CAS  Google Scholar 

  59. Sagi-Eisenberg R, Lieman H, Pecht I (1985) Protein kinase C regulation of the receptor-coupled calcium signal in histamine-secreting rat basophilic leukaemia cells. Nature 313: 59–60

    Article  PubMed  CAS  Google Scholar 

  60. Sakmann B, Methfessel C, Mishina M, Takahashi T, Takai T, Kurasaki M, Fukuda K, Numa S (1985) Role of acetylcholine receptor subunits in gating of the channel. Nature 318: 538–543

    Article  PubMed  CAS  Google Scholar 

  61. Schwartzkroin PA (1975) Characteristics of CA I neurons recorded intracellularly in the hippocampal in vitro slice preparation. Brain Res 85: 423–426

    Article  PubMed  CAS  Google Scholar 

  62. Sefton BM, Hunter T (1984) Tyrosine protein kinases. Adv Cyclic Nucleotide Protein Phosphorylation Res 18: 195–217

    PubMed  CAS  Google Scholar 

  63. Siegelbaum SA, Camardo JS, Kandel ER (1982) Serotonin and cyclic AMP close single K+ channels in Aplysia sensory neurones. Nature 299: 413–417

    Article  PubMed  CAS  Google Scholar 

  64. Siegelbaum SA, Tsien RW (1983) Modulation of gated ion channels as a mode of transmitter action. Trends Neurosci 6: 307–313

    Article  CAS  Google Scholar 

  65. Sigel E, Barnard EA (1984) A α-aminobutyric acid/benxodiazepine receptor complex from bovine cerebral cortex: improved purification with preservation of regulatory sites and their interactions. J Biol Chem 259: 7219–7223

    PubMed  CAS  Google Scholar 

  66. Stanfield PR, Nakajima Y, Yamaguchi K (1985) Substance P raises neuronal membrane excitability by reducing inward rectification. Nature 315: 498–501

    Article  PubMed  CAS  Google Scholar 

  67. Stevens CF (1985) Acetylcholine receptors; fivefold symmetry and the ɛ subunit. Trends Neurosci 8: 335–336

    Article  CAS  Google Scholar 

  68. Streb H, Irvine RF, Berridge MJ, Schulz I (1983) Release of Ca2+ from a non-mitochondrial intracellular store in pancreatic acinar cells by inositol-l,4,5-trisphosphate. Nature 306: 67–69

    Article  PubMed  CAS  Google Scholar 

  69. Strong J A (1984) Modulation of potassium current kinetics in bag cell neurones of Aplysia by an activator of adenylate cyclase. J Neurosci 4: 2772–2783

    PubMed  CAS  Google Scholar 

  70. Study RE, Barker JL (1981) Diazepam and (−) pentobarbital: fluctuation analysis reveals different mechanisms for potentiation of α-aminobutyric acid responses in cultured central neurones. Proc Natl Acad Sci USA 78: 7180–7184

    Article  PubMed  CAS  Google Scholar 

  71. Sugden D, Vanecek J, Klein DC, Thomas TP, Anderson WB (1985) Activation of protein kinase C potentiates isoprenaline-induced cyclic AMP accumulation in rat pinealocytes. Nature 314: 359–361

    Article  PubMed  CAS  Google Scholar 

  72. Takayama S, White MF, Lauris V, Kahn CR (1984) Phorbol es-ters modulate insulin receptor phosphorylation and insulin action in cultured hepatoma cells. Proc Natl Acad Sci USA 81: 7797–7801

    Article  PubMed  CAS  Google Scholar 

  73. Trautwein W, Taniguchi J, Noma A (1982) The effects of intracellular cyclic nucleotide and calcium on the action potential and acetylcholine response of isolated cardiac cells. Pflügers Arch 392: 307–314

    Article  PubMed  CAS  Google Scholar 

  74. Truneh A, Albert F, Golstein P, Schmitt-Verhulst A-M (1985) Early steps of lymphocyte activation bypassed by synergy between calcium ionophores and phorbolester. Nature 313: 318–320

    Article  PubMed  CAS  Google Scholar 

  75. Tsien RW (1977) Cyclic AMP and contractile activity in the heart. Adv Cyclic Nucleotide Res 8: 363–420

    PubMed  CAS  Google Scholar 

  76. Tsien RY, Pozzan T, Rink TJ (1982) T-cell mitogens cause early changes in cytoplasmic free Ca2+ and membrane potential in lymphocytes. Nature 295: 68–71

    Article  PubMed  CAS  Google Scholar 

  77. Tsunoo A, Konishi S, Otsuka M (1982) Substance P as an excitatory transmitter of primary afferent neurons in guineapig sympathetic ganglia. Neuroscience 7: 2025–2037

    Article  PubMed  CAS  Google Scholar 

  78. Walaas SI, Ouimet CC, Hemmings HC, Greengard P (1985) Dopamine regulated protein phosphorylation systems in the basal ganglia. Neurosci Lett [Suppl] (1985): 5409

    Google Scholar 

  79. White BA, Bauerle LR, Bancroft FC (1981) Calcium specifically stimulates prolactin synthesis and messenger RNA sequences in GH3 cells. J Biol Chem 256: 5942–5945

    PubMed  CAS  Google Scholar 

  80. Williams DA, Fogarty KE, Tsien RY, Fay FS (1985) Calcium gradients in single smooth muscle cells revealed by the digital imaging microscope using Fura-II. Nature 318: 558–561

    Article  PubMed  CAS  Google Scholar 

  81. Williams JT, Egan TM, North RA (1982) Enkephalin opens potassium channels on mammalian central neurons. Nature 299: 74–77

    Article  PubMed  CAS  Google Scholar 

  82. Witters LA, Vater CA, Lienhard GE (1985) Phosphorylation of the glucose transporter in vitro and in vivo by protein kinase C. Nature 315: 777–778

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mitchell, R. (1987). Molecular Aspects of Central Neurotransmitter Function. In: Transmitter Molecules in the Brain. Basic and Clinical Aspects of Neuroscience, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-69950-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-69950-4_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-13701-6

  • Online ISBN: 978-3-642-69950-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics