• Anthony J. Harmar
Part of the Basic and Clinical Aspects of Neuroscience book series (BASIC, volume 2)


Since the early 1970s, it has become clear that in addition to the “classical” neurotransmitters, many small peptides are present in nervous tissue (Fig. 1) and neurotransmitter or neuromodulator roles have been proposed for several of them [2, 7].


Nerve Terminal Axonal Transport Precursor Polypeptide Classical Neurotransmitter Nuclear Precursor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Darnell JE (1985) RNA. Sci Am 253: 54–64Google Scholar
  2. 2.
    Emson PC (1979) Peptides as neurotransmitter candidates in the mammalian CNS. Prog Neurobiol 13: 61–116CrossRefGoogle Scholar
  3. 3.
    Habener JL (1985) Genetic control of hormone formation. In: Wilson JD, Foster DW (eds) Williams textbook of endocrinology. Saunders, Philadelphia, pp 9–32Google Scholar
  4. 4.
    Harmar AJ, Keen P (1981) The turnover of neuropeptides. In: Pycock CJ, Taberner PV (eds) Central neurotransmitter turnover. Croom Helm, London, pp 125–142Google Scholar
  5. 5.
    Hollt V (1985) Multiple endogenous opioid peptides. In: Bousfield D (ed) Neurotransmitters in action. Elsevier, Amsterdam, pp 188–193Google Scholar
  6. 6.
    Hughes J, Smith TW, Kosterlitz HW, Fothergill LA, Morgan BA, Morris HR (1975) Identification of two related pentapeptides from brain with potent opiate agonist activity. Nature 258: 577–579PubMedCrossRefGoogle Scholar
  7. 7.
    Krieger DT (1983) Brain peptides: what, where, and why? Science 222: 975–985PubMedCrossRefGoogle Scholar
  8. 8.
    Luft R, Efendic S, Hökfelt T (1978) Somatostatin — both hormone and neurotransmitter? Diabetologia 14: 1–13PubMedCrossRefGoogle Scholar
  9. 9.
    Lundberg JM, Hökfelt T (1985) Coexistence of peptides and classical neurotransmitters. In: Bousfield D (ed) Neurotransmitters in action. Elsevier, Amsterdam, pp 104–119Google Scholar
  10. 10.
    Mains RE, Eipper BA, Glembotski CC, Dores RM (1983) Strategies for the biosynthesis of bioactive peptides. Trends Neurosci 6: 229–235CrossRefGoogle Scholar
  11. 11.
    Nawa H, Kotani H, Nakanishi S (1984) Tissue-specific generation of two preprotachykinin mRNAs from one gene by alternative RNA splicing. Nature 312: 729–734PubMedCrossRefGoogle Scholar
  12. 12.
    Otsuka M, Konishi S (1985) Substance P - the first peptide neurotransmitter? In: Bousfield D (ed) Neurotransmitters in action. Elsevier, Amsterdam, pp 163–169Google Scholar
  13. 13.
    Rosenfeld MG, Amara SG, Evans RM (1984) Alternative RNA processing: determining neuronal phenotype. Science 225: 1315–1320PubMedCrossRefGoogle Scholar
  14. 14.
    Turner AJ (1984) Neuropeptide processing enzymes. Trends neurosci 7: 258–260CrossRefGoogle Scholar
  15. 15.
    Vigneaud V Du, Lawler HC, Popenoe EA (1953) Enzymic clearage of glycinamide from vasopressin and a proposed structure for this pressor-antidiuretic hormone of the posterior pituitary. J Amer Chem Soc 75: 4880–4881CrossRefGoogle Scholar
  16. 16.
    Zukin RS, Zukin SR (1985) The case for multiple opiate receptors. In: Bousfield D (ed) Neurotransmitters in action. Elsevier, Amsterdam, pp 201–208Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • Anthony J. Harmar
    • 1
  1. 1.MRC Brain Metabolism UnitUniversity Department of PharmacologyEdinburghUK

Personalised recommendations