Chromatographic Analysis of Bacterial Cellular Components

  • C. W. Moss
Conference paper


A major application of chromatography in microbiology has been the study of the chemical composition of microorganisms. Data from these studies have demonstrated the value of chemical information for differentiation of closely related groups or species of microorganisms. The chemical classes studied in greatest detail are cellular fatty acids (and other lipids) and respiratory quinones. Methodology and chromatographic techniques for determination of these compounds and examples of their usefulness in taxonomy are discussed in this report.


Cellular Fatty Acid Supercritical Fluid Chromatography Isoprenoid Quinone Hydrolysis Procedure Cellular Fatty Acid Composition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aluyi HS, Drucker DB (1983) Trimethylsilyl-sugar profiles of Streptococcus milleri and Streptococcus mitis. J Appl Bacteriol 54:391–397PubMedCrossRefGoogle Scholar
  2. 2.
    Alvin C, Larsson L, Magnusson M, Mardh PA, Odham G, Westerdahl G (1983) Determination of fatty acids and carbohydrate monomers in micro-organisms by glass capillary gas chromatography: analysis of Mycobacterium gordonae and Mycobacterium scrofulaceum. J Gen Microbiol 129:401–405PubMedGoogle Scholar
  3. 3.
    Becker B, Lechevalier MP, Gordon RE, Lechevalier HA (1964) Rapid differentiation between Nocardia and Streptomyces by paper chromatography of whole-cell hydrolysates. Appl Microbiol 12:421–423PubMedGoogle Scholar
  4. 4.
    Berd D (1973) Laboratory identification of clinically important aerobic actinomycetes. Appl Microbiol 25:665–681PubMedGoogle Scholar
  5. 5.
    Carlone GM, Anet FAL (1983) Detection of menaquinone-6 and a novel methyl-substituted menaquinone- 6 in Campylobaeter jejuni and Campylobaeter fetus subsp etus. J Gen Microbiol 129:3385–3393PubMedGoogle Scholar
  6. 6.
    Collins MD (1982) A note on the separation of natural mixtures of bacterial menaquinones using reverse-phase high-performance liquid chromatography. J Appl Bacteriol 52:457–460CrossRefGoogle Scholar
  7. 7.
    Collins MD, Jones D (1981) Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implications. Microbiol Rev 45:316–354PubMedGoogle Scholar
  8. 8.
    Ferragut C, Izard D, Gavini F, Kersters K, Delay J, Leclere H (1983) Klebsiella trevisonii: a new species from water and soil. Int J Syst Bacteriol 33:133–142CrossRefGoogle Scholar
  9. 9.
    Fox A, Morgan SL, Hudson JR, Zhu ZT, Lau PY (1983) Capillary gas chromatographic analysis of alditol acetates of neutral and amino sugars in bacterial cell walls. J Chromatogr 256:429–438PubMedCrossRefGoogle Scholar
  10. 10.
    Hanna J, Neill SD, O’Brien JJ, Ellis WA (1983) Comparison of aerotolerant and reference strains of Campylobacter species by polyacrylamide gel electrophoresis. Int J Syst Bacteriol 33:143–146CrossRefGoogle Scholar
  11. 11.
    Jantzen E, Berdal BP, Omland T (1979) Cellular fatty acid composition of Francisella tularensis. J Clin Microbiol 10:928–930PubMedGoogle Scholar
  12. 12.
    Karr DE, Bibb WF, Moss CW (1982) Isoprenoid quinones of the genus Legionella. J Clin Microbioi 15:1044–1048Google Scholar
  13. 13.
    Lambert MA, Moss CW (1983) Comparison of the effects of acid and base hydrolyses on hydroxy and cyclopropane fatty acids in bacteria. J Clin Microbiol 18:1370–1377PubMedGoogle Scholar
  14. 14.
    Lechevalier MP (1982) Lipids in bacterial taxonomy. In: Laskin AI, Lechevalier HA (eds) CRC handbook of microbiology, 2nd edn. CRC, Boca Raton, pp 436–508Google Scholar
  15. 15.
    Lechevalier MP, Lechevalier H, Horan AC (1973) Chemical characteristics and classification of nocardiae. Can J Microbiol 19:965–972PubMedCrossRefGoogle Scholar
  16. 16.
    Mayberry WR, Lambe DW, Ferguson KP (1982) Identification of Bacteroides species by cellular fatty acid profiles. Int J Syst Bacteriol 32:21–27CrossRefGoogle Scholar
  17. 17.
    Minnikin DE, Goodfellow M (1980) Lipid composition in the classification and identification of acid-fast bacteria. In: Goodfellow M, Board RG (eds) Microbiological classification and identification. Academic, London, p 189Google Scholar
  18. 18.
    Moore WEC, Hash DE, Holdeman LV, Cato EP (1980) Polyacrylamide slab gel electrophoresis of soluble proteins for studies of bacterial floras. Appl Environ Microbiol 39:900–907PubMedGoogle Scholar
  19. 19.
    Moss CW (1981) Gas-liquid chromatography as an analytical tool in microbiology. J Chromatogr 203:337–347PubMedCrossRefGoogle Scholar
  20. 20.
    Moss CW, Bibb WF, Karr DE, Guerrant GO, Lambert MA (1983) Cellular fatty acid composition and ubiquinone content of Legionella feeleii sp. nov. J Clin Microbiol 18:917–919PubMedGoogle Scholar
  21. 21.
    Moss CW, Guerrant GO (1983) Separation of bacterial ubiquinones by reverse-phase high performance liquid chromatography. J Clin Microbiol 18:15–17.PubMedGoogle Scholar
  22. 22.
    Moss CW, Kai A, Lambert MA, Patton C (1984) Isoprenoid quinone content and cellular fatty acid composition of Campylobacter. J Clin Microbiol 19:772–776PubMedGoogle Scholar
  23. 23.
    Moss CW, Weaver RE, Dees SB, Cherry WB (1977) Cellular fatty acid composition of isolates from Legionnaires’ disease. J Clin Microbiol 6:140–143PubMedGoogle Scholar
  24. 24.
    Prichard DG, Coligan JE, Speed SE, Gray BM (1981) Carbohydrate fingerprints of streptococcal cells. J Clin Microbiol 13:89–92Google Scholar
  25. 25.
    Regnier FE (1983) HPLC of proteins, peptides, and polynucleotides. Anal Chem 55:1299A–1306ACrossRefGoogle Scholar
  26. 26.
    Shaw N (1974) Lipid composition as a guide to the classification of bacteria. Adv Appl Microbiol 17:63–108PubMedCrossRefGoogle Scholar
  27. 27.
    Tamoaka J, Katayoma-Fujimura Y, Kuraishi H (1983) Analysis of bacterial menaquinone mixtures by high performance liquid chromatography. J Appl Bacteriol 54:31–36CrossRefGoogle Scholar
  28. 28.
    Wilkinson SG, Carby KA (1971) Amino sugars in the cell walls of Pseudomonas species. J Gen Microbiol 66:221–227PubMedGoogle Scholar
  29. 29.
    Yamada Y, Inouye G, Tahara Y, Kondo K (1976) The menaquinone system in the classification of coryneform and nocardioform bacteria and related organisms. J Gen Appl Microbiol 22:203–214CrossRefGoogle Scholar
  30. 30.
    Yabuuchi E, Moss CW (1982) Cellular fatty acid composition of strains of three species of Sphingobacterium gen. nov. and Cytophagajohnsonae. FEMS Microbiol Lett 13:87–91CrossRefGoogle Scholar
  31. 31.
    Yabuuchi E, Kaneko T, Yano I, Moss CW, Miyoshi M (1983) Sphingobacterium gen. nov., Sphingobacterium spiritivorum comb. nov., Sphingobacterium multivorum comb. nov., Sphingobacterium mizutae sp. nov., and Flavobacterium indologenes sp. nov.: glucose-nonfermenting gramnegative rods in CDC groups IIk-2 and IIb. Int J Syst Bacteriol 33:580–598CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • C. W. Moss
    • 1
  1. 1.Division of Bacterial Diseases, Biochemistry LaboratoryCenters for Disease Control, Center for Infectious DiseasesAtlantaUSA

Personalised recommendations