Advertisement

New Developments in Nucleic Acid Hybridization

  • H. Wolf
  • M. Haus
  • U. Leser
  • S. Modrow
  • M. Motz
  • S.-Y. Gu
  • N. Falser
  • I. Bandlow
  • W. Richter
  • R. Pathmanathan
Conference paper

Abstract

Nucleic acid hybridization is based on the tendency of nucleic acids to form double-stranded hydrogen-bonded complexes if strands of complementary sequences are incubated under appropriate salt and temperature conditions. The technique has been widely applied to study mainly the following questions:
  • Presence of genes

  • State of genes (free linear, circular, integrated)

  • Localization of genes in specific tissue or cell types or in subcellular structures

  • Transcriptional activity of genes.

Keywords

Nasopharyngeal Carcinoma Nucleic Acid Hybridization Spot Hybridization Nucleic Acid Spot Hybridization Free Linear 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alwine J, Kemp D, Stark G (1977) Method for detection of specific RNAs in agarose gels by transfer to diazobenzyloxymethyl-paper and hybridization with DNA probes. Proc Natl Acad Sci USA 74/12: 5350–5354PubMedCrossRefGoogle Scholar
  2. Botchan M, Topp W, Sambrook J (1976) The arrangement of simian virus 40 sequences in the DNA of transformed cell. 9: 269PubMedCrossRefGoogle Scholar
  3. Brandsma J, Müller G (1980) Nucleic acid spot hybridization: rapid quantitative screening of lymphoid cell lines for Epstein-Barr viral DNA. Proc Natl Acad Sci USA 77: 6851–5PubMedCrossRefGoogle Scholar
  4. Bresser J. Doering J. Gillespie D (1983) Quick-blot: Selective mRNA or DNA immobilization from whole cells. DNA 2: 3Google Scholar
  5. Brigati D, Myerson D, Leary J, Spalholz B, Travis S, Fong C, Hsiung G, Ward D (1983) Detection of viral genomes in cultured cells and paraffin-embedded tissue sections using biotin-labeled hybridization probes. Virology 126: 32–50PubMedCrossRefGoogle Scholar
  6. Britten R, Smith J (1970) A bovine genome. Carnegie Inst Washington Yearb 68: 378: 386Google Scholar
  7. Chou S, Merigan T (1983) Rapid detection and quantitation of human cytomegalovirus in urine through DNA hybridization. N Engl J Med 308/16: 921PubMedCrossRefGoogle Scholar
  8. Commerford S (1971) Iodination of nucleic acids in vitro. Biochemistry 10/10: 1993–1999PubMedCrossRefGoogle Scholar
  9. Desgranges C, Wolf H, De-The G, Shanmugaratnam K, Cammoun N, Ellouz R, Klein G, Lennert K, Munez N, Zurhausen H (1975) Nasopharyngeal carcinoma, X. Presence of Epstein-Barr genomes in separated epithelial cells of tumors in patients from Singapore, Tunisia and Kenya. Int J Cancer 16: 7–15PubMedCrossRefGoogle Scholar
  10. Desgranges C, Bornkamm G, Zeng Y, Wang P, Zhu J, Shang M, De-The G (1982) Detection of Epstein-Barr viral DNA internal repeats in the nasopharyngeal mucosa of chinese with IgA/EBV-specific antibodies. Int J Cancer 29: 87–91PubMedCrossRefGoogle Scholar
  11. Flores J, Purcell R, Perez I, Wyatt R, Boeggeman E, Sereno M, White L, Chanock R, Kapikian A (1983) A dot hybridisation assay for detection of rotavirus. Lancet 1: 555–558PubMedCrossRefGoogle Scholar
  12. Frenkel N, Locker H, Cox B, Roizman B, Rapp F (1976) Herpes simplex virus DNA in transformed cells: Sequence complexity in five hamster cell lines and one derived hamster tumor. J Virol 18/3: 885–893PubMedGoogle Scholar
  13. Gall J, Pardue J (1969) Formation and detection of RNA-DNA hybrid molecules in cytological preparations. DNAS 63: 378–383CrossRefGoogle Scholar
  14. Gerhard D, Kawasaki E, Bancroft F, Szabo P (1981) Localization of a unique gene by direct hybridization in situ. Proc Natl Acad Sci USA 78/6: 3755–3759PubMedCrossRefGoogle Scholar
  15. Gillespie D, Spiegelman S (1965) A quantitative assay for DNA/RNA hybrids with DNA immobilized on a membrane. J Mol Biol 12: 829PubMedCrossRefGoogle Scholar
  16. Gillis M, De Ley J, De Cleene M (1970) The determination of molecular weight of bacterial genome DNA from renaturation rates. Eur J Biochem 12: 143–153PubMedCrossRefGoogle Scholar
  17. Grunstein M, Hogness D (1975) Colony hybridization: A method for the isolation of cloned DNAs that contain a specific gene. Proc Nat! Acad Sci 72/10: 3961–3965CrossRefGoogle Scholar
  18. Gu S, Wolf H, Yi Z (1983) Cloning fragments of EBV-DNA in single-stranded phage M13mp8 I preparation and identification of cloned DNA. Cancer (China) 129–135Google Scholar
  19. Han J, Harding J (1983) Using iodinated single-stranded M13 probes to facilitate rapid DNA sequence analysis-nucleotide sequence of a mouse lysine tRNA gene. Nucleic Acids Res 11: 7CrossRefGoogle Scholar
  20. Henderson A, Ripley S, Heller M, Kieff E (1983) Chromosome site for Epstein-Barr virus DNA in a Burkitt tumor cell line and in lymphocytes growth-transformed in vitro. Proc Natl Acad Sci USA 80: 1987–1991PubMedCrossRefGoogle Scholar
  21. Howley P, Israel M, Law M, Martin M (1979) Rapid methods for detecting and mapping homology between heterologous DNAs. J Biol Chem 254/10: 4876–4883PubMedGoogle Scholar
  22. Hu N, Messing J (1982) The making of strand-specific M13 probes. Gene 17: 271–277PubMedCrossRefGoogle Scholar
  23. Kohne D, Britten R (1971) Hydroxyapatit techniques for nucleic acid reassociations. In: Davies (ed) Procedures in nucleic Acid Research, vol 2. Harper and Rowe, New York, pp 500–512Google Scholar
  24. Langer P, Waldrop A, Ward D (1981) Enzymatic synthesis of biotin-labeled polynucleotides: Novel nucleic acid affinity probes. Proc Natl Acad Sci USA 78/11: 6633–6637PubMedCrossRefGoogle Scholar
  25. Langridge J, Langridge P, Bergquist P (1980) Extraction of nucleic acids from agarose gels. Anal Bio-chem 103: 264–271Google Scholar
  26. McConaughy L, Laird C, McCarthy B (1969) Nucleic acid reassociation in formamide. Biochemistry 8: 8CrossRefGoogle Scholar
  27. Messing J (1983) New M13 vectors for cloning. Methods Enzymol 101: 20PubMedCrossRefGoogle Scholar
  28. Peden K, Mounts P, Hayward G (1982) Homology between mammalian cell DNA sequences and human herpesvirus genomes detected by a hybridization procedure with high-complexity probe. Cell 31: 71–80PubMedCrossRefGoogle Scholar
  29. Prensky W (1976) The radioiodination of RNA and DNA to high specific activities. Methods Cell Biol 13: 121–152PubMedCrossRefGoogle Scholar
  30. Richter W, Gu S, Seibl R, Wolf H (1983) A new method for examination of carcinomas of the nasopharynx. In: Prasad U et al. (eds) Nasopharyngeal carcinoma: Current concepts. University of Malaya Press, pp 25–33Google Scholar
  31. Scotto J, Hadchouel M, Hery C, Yvart J, Tiollais P, Brechot C (1983) Detection of hepatitis B virus DNA in serum by a simple spot hybridization technique: Comparison with results for other viral markers. Hepatology 3/3: 279: 284Google Scholar
  32. Southern E (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98: 503–517PubMedCrossRefGoogle Scholar
  33. Thomas P (1980) Hybridization of denatured RNA and small DNA fragments transferred to nitrocellulose. Proc Natl Acad Sci USA 77/9: 5201–5205PubMedCrossRefGoogle Scholar
  34. Vincent M, Beltz W, Ashton S (1982) Preparation of DNA labeled with high specific activity S35-deoxy-adenosine 5’ (a-thio) triphosphate; the use of 35S-Labeled nucleic acids as molecular hybridization probes. Miami Winter SymposiumGoogle Scholar
  35. Vogelstein B, Gillespie D (1979) Preparative and analytical purification of DNA from agarose. Proc Natl Acad Sci USA 76/2: 615: 619CrossRefGoogle Scholar
  36. Wolf H (1981) Die Verwendung verschiedener Nukleinsäure-Hybridisierungstechniken am Beispiel von Epstein-Barr-Virus korrelierter Erkrankungen. Verh Dtsch Ges Pathol 65: 47–57PubMedGoogle Scholar
  37. Wolf H, zurHausen H, Becker V (1973) EB viral genomes in epithelial nasopharyngeal carcinoma cells. Nature New Biol 138: 245–247Google Scholar
  38. Wolf H, zurHausen H, Klein G, Becker V, Henle G, Henle W (1975) Attempts to detect virus-specific DNA sequences in human tumors, III. Epstein-Barr viral DNA in non-lymphoid nasopharyngeal carcinoma cells. Med Microbiol Immunol (Berl) 161: 15–21CrossRefGoogle Scholar
  39. Wolf H, Haus M, Wilmes E (1984) EBV persists in the parotid gland. J Virol 51: 795–798PubMedGoogle Scholar
  40. zurHausen H, Diehl V, Wolf H, Schulte-Holthausen H (1974) EB virus associated macromolecules in cells derived from human tumors. Mol Studies Viral Neoplasia 517–530Google Scholar
  41. zurHausen H, Schulte-Holthausen H, Klein G, Henle W, Henle G, Clifford P, Santesson L (1970) EBV DNA in biopsies of Burkitt tumors and anaplastic carcinomas of the nasopharynx. Nature 228: 1056–1058PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • H. Wolf
    • 1
  • M. Haus
    • 1
  • U. Leser
    • 1
  • S. Modrow
    • 1
  • M. Motz
    • 1
  • S.-Y. Gu
    • 2
  • N. Falser
    • 3
  • I. Bandlow
    • 3
  • W. Richter
    • 4
  • R. Pathmanathan
    • 5
  1. 1.Max von Pettenkofer-InstitutUniversität MünchenMünchen 2Germany
  2. 2.Institute of VirologyBeijing, Peoples Republic of ChinaChina
  3. 3.Hals-Nasen-Ohren-KlinikUniversität InnsbruckInnsbruckAustria
  4. 4.Hals-Nasen-Ohren-KlinikUniversität WürzburgWürzburgGermany
  5. 5.Institute of PathologyUniversity of MalayaKuala LumpurMalaysia

Personalised recommendations